Tusach.vn xin giới thiệu lời giải chi tiết bài 56 trang 30 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:
Đề bài
Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:
A. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{4} + k\frac{{2\pi }}{3}}\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)
B. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}}\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)
C. \(\left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}}\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)
D. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k2\pi }\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)
Phương pháp giải - Xem chi tiết
Sử dụng kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
Ta có:
\(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{4} + k2\pi \\2x = - x - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\3x = - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
Đáp án đúng là B.
Bài 56 trang 30 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ định nghĩa, tính chất của vectơ, cũng như các công thức liên quan để giải quyết một cách chính xác.
Để giúp các em học sinh hiểu rõ hơn về bài tập này, Tusach.vn sẽ trình bày chi tiết nội dung bài tập và lời giải:
Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.
Áp dụng quy tắc trung điểm, ta có:
Ta có: AM = (AB + AC) / 2
Khi giải bài tập vectơ, cần chú ý các điểm sau:
Để củng cố kiến thức về vectơ, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều và các tài liệu tham khảo khác.
Tusach.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục kiến thức. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 11 Cánh Diều. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất!
| Chương | Bài | Liên kết |
|---|---|---|
| 1 | Bài 1 | Link bài 1 |
| 2 | Bài 2 | Link bài 2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập