Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 4 trang 68 sách bài tập Toán 11 Cánh Diều. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi đã biên soạn hướng dẫn này để giúp bạn hiểu rõ hơn về các khái niệm và phương pháp giải.
Bài viết này sẽ cung cấp đáp án, cách giải chi tiết và những lưu ý quan trọng để bạn có thể tự tin giải quyết các bài toán tương tự.
Phát biểu nào sau đây là SAI?
Đề bài
Phát biểu nào sau đây là SAI?
A. Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \).
B. Nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \).
C. Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = 0\).
D. Nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực
Lời giải chi tiết
Đáp án A đúng vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \)
Đáp án B đúng vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \)
Đáp án C sai vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \ne 0\)
Đáp án D đúng vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \)
Vậy đáp án cần chọn là đáp án B.
Bài 4 trang 68 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và sử dụng đồ thị để giải quyết các bài toán thực tế.
Thông thường, bài tập 4 trang 68 sẽ bao gồm các dạng bài sau:
Để giải quyết bài tập 4 trang 68 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tìm tập xác định của hàm số y = tan(2x + π/3). Để giải bài này, bạn cần nhớ rằng hàm số tangen xác định khi cos(2x + π/3) ≠ 0. Từ đó, bạn giải phương trình cos(2x + π/3) = 0 để tìm ra các giá trị của x mà hàm số không xác định. Tập xác định của hàm số là tập hợp tất cả các giá trị của x không thỏa mãn phương trình trên.
Tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác và nâng cao kết quả học tập của bạn!
| Hàm số | Tập xác định | Tập giá trị |
|---|---|---|
| y = sin(x) | R | [-1, 1] |
| y = cos(x) | R | [-1, 1] |
| y = tan(x) | x ≠ π/2 + kπ (k ∈ Z) | R |
Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập