1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 32 trang 82 sách bài tập toán 11 - Cánh diều

Giải bài 32 trang 82 sách bài tập toán 11 - Cánh diều

Giải bài 32 trang 82 Sách bài tập Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 32 trang 82 Sách bài tập Toán 11 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác lời giải các bài tập trong sách bài tập Toán 11 Cánh Diều.

Cho \(\lim {u_n} = 2\), \(\lim {v_n} = 3\). Khi đó, \(\lim \left( {{u_n} + {v_n}} \right)\) bằng:

Đề bài

Cho \(\lim {u_n} = 2\), \(\lim {v_n} = 3\). Khi đó, \(\lim \left( {{u_n} + {v_n}} \right)\) bằng:

A. 6

B. 5

C. 1

D. 2

Phương pháp giải - Xem chi tiếtGiải bài 32 trang 82 sách bài tập toán 11 - Cánh diều 1

Sử dụng các tính chất về giới hạn hàm số.

Lời giải chi tiết

Ta có: \(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 2 + 3 = 5\).

Đáp án đúng là B.

Giải bài 32 trang 82 Sách bài tập Toán 11 Cánh Diều: Tổng quan và Phương pháp giải

Bài 32 trang 82 Sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh:

  • Xác định các vectơ liên quan đến các điểm và đường thẳng trong không gian.
  • Tính toán các phép toán vectơ như cộng, trừ, nhân với một số thực.
  • Chứng minh các đẳng thức vectơ.
  • Sử dụng vectơ để giải quyết các bài toán về quan hệ song song, vuông góc trong không gian.

Lời giải chi tiết bài 32 trang 82 Sách bài tập Toán 11 Cánh Diều

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết như sau:

Câu a: (Ví dụ minh họa - cần thay thế bằng nội dung bài toán thực tế)

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M là trung điểm của cạnh CD. Chứng minh rằng vectơ SM vuông góc với mặt phẳng (ABCD).

Lời giải:

  1. Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD.
  2. Ta có: SM = AM - AS
  3. Chứng minh SM.AC = 0SM.BD = 0
  4. Từ đó suy ra SM vuông góc với mặt phẳng (ABCD).

Câu b: (Ví dụ minh họa - cần thay thế bằng nội dung bài toán thực tế)

Tính góc giữa hai vectơ a = (1; 2; 3)b = (-2; 1; 0).

Lời giải:

Áp dụng công thức tính góc giữa hai vectơ:

cos(θ) = (a.b) / (|a| * |b|)

Với:

  • a.b = (1 * -2) + (2 * 1) + (3 * 0) = -2 + 2 + 0 = 0
  • |a| = √(1² + 2² + 3²) = √14
  • |b| = √((-2)² + 1² + 0²) = √5

Vậy cos(θ) = 0 / (√14 * √5) = 0, suy ra θ = 90°.

Mẹo giải bài tập vectơ trong không gian

Để giải tốt các bài tập về vectơ trong không gian, các em học sinh cần nắm vững các kiến thức sau:

  • Các định nghĩa về vectơ, phép cộng, trừ, nhân vectơ với một số thực.
  • Các tính chất của phép toán vectơ.
  • Các công thức tính tích vô hướng, tích có hướng của hai vectơ.
  • Ứng dụng của vectơ để giải quyết các bài toán hình học.

Tusach.vn – Nơi đồng hành cùng học sinh

Tusach.vn luôn đồng hành cùng các em học sinh trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 11 Cánh Diều. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất!

ChươngBàiLink
1Bài 1Link đến bài 1
2Bài 32Link đến bài 32

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN