Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 44 trang 113 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và cập nhật nhanh chóng nhất để hỗ trợ quá trình học tập của bạn.
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.
Đề bài
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.
Phương pháp giải - Xem chi tiết
Trước hết, cần chứng minh kết quả phụ: Trong một hình bình hành, tổng bình phương của hai đường chéo bằng tổng bình phương tất cả các cạnh của hình bình hành. Áp dụng kết quả này vào hình hộp.
Lời giải chi tiết
Trước hết, ta sẽ chứng minh kết quả phụ: Trong một hình bình hành, tổng bình phương của hai đường chéo bằng tổng bình phương tất cả các cạnh của hình bình hành. Xét hình bình hành \(MNPQ\) như hình dưới đây. Ta cần chứng minh rằng \(M{P^2} + N{Q^2} = M{N^2} + N{P^2} + P{Q^2} + Q{M^2}\)

Áp dụng định lí cosin trong tam giác \(MPQ\) và \(NPQ\), ta có:
\(M{P^2} = Q{M^2} + Q{P^2} - 2QM.QP.\cos MQP\)
\(Q{N^2} = P{Q^2} + P{N^2} - 2PN.PQ.\cos QPN\).
Do \(QM = PN\) và \(\cos MQP = - \cos QPN\) (do \(\widehat {MQP}\) và \(\widehat {QPN}\) bù nhau), nên ta có
\(M{P^2} + N{Q^2} = M{Q^2} + 2P{Q^2} + P{N^2} - 2QM.QP\cos MQP + 2QM.QP\cos MQP\)
\( \Rightarrow M{P^2} + N{Q^2} = 2\left( {M{N^2} + N{P^2}} \right)\).
Ta có điều phải chứng minh.
Quay trở lại bài toán, ta xét hình hộp \(ABCD.A'B'C'D'\).

Áp dụng kết quả vừa chứng minh được ở trên với hai hình bình hành \(ACC'A'\), \(DBB'D'\) và \(A'B'C'D'\) ta có:
\(AC{'^2} + A'{C^2} = 2\left( {AA{'^2} + A'C{'^2}} \right)\) ; \(B'{D^2} + BD{'^2} = 2\left( {BB{'^2} + B'D{'^2}} \right)\);
\(A'C{'^2} + B'D{'^2} = 2\left( {A'B{'^2} + A'D{'^2}} \right)\).
Như vậy
\(AC{'^2} + A'{C^2} + BD{'^2} + B'{D^2} = 2\left( {AA{'^2} + A'C{'^2} + BB{'^2} + B'D{'^2}} \right)\)
\( = 4AA{'^2} + 2\left( {A'C{'^2} + B'D{'^2}} \right) = 4AA{'^2} + 4A'B{'^2} + 4A'D{'^2}\).
Do \(4AA{'^2} = AA{'^2} + BB{'^2} + CC{'^2} + DD{'^2}\), \(4A'B{'^2} = A'B{'^2} + A{B^2} + C'D{'^2} + C{D^2}\), \(4A'D{'^2} = A'D{'^2} + A{D^2} + B'C{'^2} + B{C^2}\), ta kết luận rằng trong một hình hộp, tổng bình phương tất cả các đường chéo bằng tổng tất cả các cạnh của hình hộp đó.
Bài toán được chứng minh.
Bài 44 trang 113 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số (tổng, hiệu, tích, thương, hàm hợp).
Bài 44 thường bao gồm các dạng bài tập sau:
Để giải bài 44 trang 113 SBT Toán 11 Cánh Diều hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là ví dụ minh họa cách giải một dạng bài tập thường gặp trong bài 44:
Giải:
Áp dụng quy tắc đạo hàm của hàm đa thức, ta có:
f'(x) = 3x2 + 4x - 5
Tusach.vn cung cấp đầy đủ lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 11 Cánh Diều. Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Hàm số | Đạo hàm |
|---|---|
| y = c (c là hằng số) | y' = 0 |
| y = xn | y' = nxn-1 |
| y = sinx | y' = cosx |
| y = cosx | y' = -sinx |
Chúc bạn học tập tốt và đạt kết quả cao!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập