Tusach.vn xin giới thiệu lời giải chi tiết bài 33 trang 39 SBT Toán 11 Cánh Diều. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và nắm vững kiến thức liên quan đến nội dung bài học.
Chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với các bước giải chi tiết, giúp bạn tự tin giải các bài tập tương tự.
Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ của \({}_6^{14}C\)
Đề bài
Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ của \({}_6^{14}C\) có trong mẫu vật tại thời điểm \(t\)(năm) (so với thời điểm ban đầu \(t = 0\)), sau đó sử dụng công thức tính độ phóng xạ \(H = {H_0}{e^{ - \lambda t}}\) (đơn vị là Becquerel, kí hiệu Bq) với \({H_0}\) là độ phóng xạ ban đầu (tại thời điểm \(t = 0\)); \(\lambda = \frac{{\ln 2}}{T}\) là hằng số phóng xạ, \(T = 5730\)(năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính độ phóng xạ \(H = {H_0}{e^{ - \lambda t}}\) để xác định độ tuổi của mẫu gỗ cổ.
Lời giải chi tiết
Theo đề bài: \(H = 0,215{\rm{ Bp}};{\rm{ }}{H_0} = 0,25{\rm{ Bp; }}T = 5730\)(năm).
Từ công thức: \(H = {H_0}{e^{ - \lambda t}} \Leftrightarrow {e^{ - \lambda t}} = \frac{H}{{{H_0}}} \Leftrightarrow - \lambda t = \ln \left( {\frac{H}{{{H_0}}}} \right) \Leftrightarrow - \frac{{\ln 2}}{T}.t = \ln \left( {\frac{H}{{{H_0}}}} \right)\)
\( \Leftrightarrow t = - {\rm{l}}n\left( {\frac{H}{{{H_0}}}} \right).\frac{T}{{\ln 2}} = - \ln \frac{{0,215}}{{0,25}}.\frac{{5730}}{{\ln 2}} \approx 1247\)(năm).
Bài 33 trang 39 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về hàm số lượng giác, đồ thị hàm số lượng giác, phương trình lượng giác và các tính chất liên quan để giải quyết các bài toán cụ thể.
Bài 33 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 33 trang 39 SBT Toán 11 Cánh Diều, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hàm số y = sin(2x). Hãy xác định tập xác định của hàm số.
Lời giải:
Hàm số y = sin(2x) xác định khi và chỉ khi biểu thức bên trong hàm sin có nghĩa. Vì hàm sin xác định với mọi giá trị thực của x, nên 2x có nghĩa với mọi x thuộc tập số thực. Do đó, tập xác định của hàm số y = sin(2x) là D = ℝ.
Tìm tập giá trị của hàm số y = 2cos(x) - 1.
Lời giải:
Ta biết rằng -1 ≤ cos(x) ≤ 1 với mọi x thuộc tập số thực. Nhân cả ba vế của bất đẳng thức với 2, ta được -2 ≤ 2cos(x) ≤ 2. Cộng 1 vào cả ba vế, ta được -1 ≤ 2cos(x) - 1 ≤ 1. Vậy tập giá trị của hàm số y = 2cos(x) - 1 là [-1, 1].
Để giải tốt các bài tập về hàm số lượng giác, các em cần nắm vững các kiến thức sau:
Tusach.vn là địa chỉ tin cậy cho học sinh và phụ huynh trong việc tìm kiếm lời giải bài tập Toán 11. Chúng tôi cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để giải bài tập Toán 11 một cách hiệu quả!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập