Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 13 trang 11 một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, đáp ứng nhu cầu học tập của học sinh.
Cho \(\sin \alpha + \cos \alpha = \frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
Đề bài
Cho \(\sin \alpha + \cos \alpha = \frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
a) \(A = \sin \alpha .\cos \alpha \)
b) \(B = \sin \alpha - \cos \alpha \)
c) \(C = {\sin ^3}\alpha + {\cos ^3}\alpha \)
d) \(D = {\sin ^4}\alpha + {\cos ^4}\alpha \)
Phương pháp giải - Xem chi tiết
a) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = \sin \alpha \), \(B = \cos \alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
b) Sử dụng hằng đẳng thức \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) với \(A = \sin \alpha \), \(B = \cos \alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và điều kiện \( - \frac{\pi }{2} < \alpha < 0\)để xét dấu của \(\sin \alpha \) và \(\cos \alpha \).
c) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\) với \(A = \sin \alpha \), \(B = \cos \alpha \).
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và kết quả ở câu a.
d) Sử dụng công thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}\alpha \), \(B = {\cos ^2}\alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và kết quả ở câu a.
Lời giải chi tiết
a) Ta có \({\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 + 2\sin \alpha \cos \alpha \)
Suy ra \(A = \sin \alpha .\cos \alpha = \frac{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2} - 1}}{2} = \frac{{{{\left( {\frac{1}{3}} \right)}^2} - 1}}{2} = - \frac{4}{9}\)
b) Ta có \({B^2} = {\left( {\sin \alpha - \cos \alpha } \right)^2} = {\sin ^2}\alpha - 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 - 2\sin \alpha \cos \alpha \)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên \({B^2} = 1 - 2\left( { - \frac{4}{9}} \right) = \frac{{17}}{9} \Rightarrow B = \pm \frac{{\sqrt {17} }}{3}\).
Do \( - \frac{\pi }{2} < \alpha < 0\), ta suy ra \(\sin \alpha < 0\), \(\cos \alpha > 0\). Từ đó \(B = \sin \alpha - \cos \alpha < 0\).
Như vậy \(B = - \frac{{\sqrt {17} }}{3}\)
c) Ta có \({\left( {\sin \alpha + \cos \alpha } \right)^3} = {\sin ^3}\alpha + {\cos ^3}\alpha + 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right)\)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên:
\(C = {\left( {\sin \alpha + \cos \alpha } \right)^3} - 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right) = {\left( {\frac{1}{3}} \right)^3} - 3.\frac{{ - 4}}{9}.\frac{1}{3} = \frac{{13}}{{27}}\).
d) Ta có \({\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} = {\left( {{{\sin }^2}\alpha } \right)^2} + {\left( {{{\cos }^2}\alpha } \right)^2} + 2{\sin ^2}\alpha {\cos ^2}\alpha \)
\( = {\sin ^4}\alpha + {\cos ^4}\alpha + 2{\sin ^2}\alpha {\cos ^2}\alpha \)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên:
\(D = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} - 2{\left( {\sin \alpha .\cos \alpha } \right)^2} = 1 - 2{\left( { - \frac{4}{9}} \right)^2} = \frac{{49}}{{81}}\)
Bài 13 trang 11 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số lượng giác để giải quyết. Để giải bài tập này hiệu quả, bạn cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài 13 thường bao gồm các dạng bài tập sau:
Để xác định tập xác định của hàm số lượng giác, bạn cần chú ý đến các điều kiện sau:
Ví dụ: Hàm số y = tan(x) có tập xác định là D = R \ {kπ + π/2, k ∈ Z}.
Để tìm tập giá trị của hàm số lượng giác, bạn có thể sử dụng các phương pháp sau:
Ví dụ: Hàm số y = 2sin(x) + 1 có tập giá trị là [-1, 3].
Để xét tính đơn điệu của hàm số lượng giác, bạn có thể sử dụng đạo hàm của hàm số. Nếu đạo hàm dương trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu đạo hàm âm trên một khoảng, hàm số nghịch biến trên khoảng đó.
Ví dụ: Hàm số y = cos(x) nghịch biến trên khoảng (0, π).
Để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác, bạn có thể sử dụng các phương pháp sau:
Ví dụ: Hàm số y = sin(x) có giá trị lớn nhất là 1 và giá trị nhỏ nhất là -1.
Để củng cố kiến thức và kỹ năng giải bài tập về hàm số lượng giác, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Hãy tìm kiếm các nguồn tài liệu học tập uy tín và tham gia các diễn đàn, nhóm học tập để trao đổi kiến thức và kinh nghiệm với bạn bè.
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và phương pháp giải bài tập hiệu quả cho bài 13 trang 11 SBT Toán 11 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
| Dạng bài | Phương pháp giải |
|---|---|
| Tập xác định | Kiểm tra điều kiện mẫu số, căn bậc chẵn, logarit |
| Tập giá trị | Đặt ẩn phụ, sử dụng tính chất hàm số |
| Tính đơn điệu | Sử dụng đạo hàm |
| Cực trị | Sử dụng đạo hàm, tính chất hàm số |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập