1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều

Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều

Giải bài 18 trang 100 SBT Toán 11 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 18 trang 100 sách bài tập Toán 11 Cánh Diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, cập nhật nhanh chóng và đầy đủ nhất để hỗ trợ quá trình học tập của các bạn.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành.

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I\), \(J\),\(K\), \(L\) lần lượt là trọng tâm của các tam giác \(SAB\), \(SBC\), \(SCD\), \(SAD\).

a) Chứng minh rằng bốn điểm \(I\), \(J\),\(K\), \(L\) đồng phẳng và tứ giác \(IJKL\) là hình bình hành.

b) Chứng minh rằng \(JL\parallel {\rm{CD}}\).

c) Xác định giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 18 trang 100 sách bài tập toán 11 - Cánh diều 1

a) Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\).

Chứng minh rằng \(MNPQ\) là hình bình hành. Chứng minh rằng \(IJ\parallel LK\) và \(IJ = LK\), để suy ra tứ giác \(IJLK\) là hình bình hành.

b) Chứng minh \(JL\) và \(CD\) cùng song song với \(NQ\), từ đó suy ra \(JL\parallel CD\).

c) Từ kết quả câu b, và sử dụng tính chất “Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó, hoặc trùng với một trong hai đường thẳng đó” để tìm giao tuyến của hai mặt phẳng \(\left( {IJKL} \right)\) và \(\left( {SCD} \right)\).

Lời giải chi tiết

a) Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(BC\), \(CD\), \(DA\).

Ta có \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(BC\), nên \(MN\) là đường trung bình của tam giác \(ABC\). Suy ra \(MN\parallel AC\) và \(MN = \frac{1}{2}AC\).

Tương tự ta có \(PQ\parallel AC\) và \(PQ = \frac{1}{2}AC\).

Suy ra \(MN\parallel PQ\) và \(MN = PQ\). Vậy tứ giác \(MNPQ\) là hình bình hành.

Giải bài 18 trang 100 sách bài tập toán 11 - Cánh diều 2

Ta có \(I\) là trọng tâm của tam giác \(SAB\), nên suy ra \(I \in SM\) và \(\frac{{SI}}{{SM}} = \frac{2}{3}\).

Chứng minh tương tự ta cũng có \(J \in SN\) và \(\frac{{SJ}}{{SN}} = \frac{2}{3}\).

Tam giác \(SMN\) có \(\frac{{SI}}{{SM}} = \frac{{SJ}}{{SN}} = \frac{2}{3}\), theo hệ quả của định lí Thales ta suy ra \(IJ\parallel MN\) và \(\frac{{IJ}}{{MN}} = \frac{2}{3}\).

Chứng minh tương tự ta cũng có \(LK\parallel PQ\) và \(\frac{{LK}}{{PQ}} = \frac{2}{3}\).

Từ đó ta suy ra \(IJ\parallel LK\) và \(IJ = LK\). Vậy bốn điểm \(I\), \(J\), \(K\), \(L\) đồng phẳng và tứ giác \(IJLK\) là hình bình hành.

b) Ta có \(L\) là trọng tâm của tam giác \(SAD\), nên suy ra \(L \in SQ\) và \(\frac{{SL}}{{SQ}} = \frac{2}{3}\).

Suy ra \(\frac{{SL}}{{SQ}} = \frac{{SJ}}{{SN}}\), tức là \(JL\parallel NQ\).

Mặt khác \(N\) là trung điểm của \(BC\),\(Q\) là trung điểm của \(DA\) nên suy ra \(NQ\parallel CD\).

Vậy \(JL\parallel CD\).

c) Xét hai mặt phẳng \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\), ta có \(JL\parallel CD\), \(JL \in \left( {IJKL} \right)\), \(CD \in \left( {SCD} \right)\).

Hơn nữa \(K \in \left( {IJKL} \right) \cap \left( {SCD} \right)\) và \(K \notin JL\), \(K \notin CD\)

Xét hai mặt phẳng \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\), ta có \(K \in \left( {IJKL} \right) \cap \left( {SCD} \right)\), tức là \(K\) nằm trên giao tuyến của hai mặt phẳng đó. Hơn nữa, \(K \notin JL\), \(K \notin CD\), nên \(JL\) và \(CD\) không là giao tuyến của hai mặt phẳng trên.

Mặt khác, ta có \(JL\parallel CD\), \(JL \in \left( {IJKL} \right)\), \(CD \in \left( {SCD} \right)\) nên giao tuyến của \(\left( {IJKL} \right)\)và \(\left( {SCD} \right)\) là một đường thẳng đi qua \(K\) và song song với \(CD\). Trên hình vẽ, giao tuyến của chúng là đường thẳng \(EF\) đi qua \(K\) và song song với \(CD\).

Giải bài 18 trang 100 SBT Toán 11 Cánh Diều: Tổng quan và Phương pháp giải

Bài 18 trang 100 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường tập trung vào việc vận dụng các kiến thức về:

  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Tính chất, ứng dụng để chứng minh vuông góc, song song.
  • Ứng dụng của vectơ trong hình học không gian: Xác định mối quan hệ giữa các điểm, đường thẳng, mặt phẳng.

Để giải quyết bài 18 trang 100 SBT Toán 11 Cánh Diều một cách hiệu quả, bạn cần nắm vững các định nghĩa, tính chất và công thức liên quan đến vectơ. Đồng thời, việc rèn luyện kỹ năng tư duy logic và khả năng phân tích bài toán cũng rất quan trọng.

Giải chi tiết bài 18 trang 100 SBT Toán 11 Cánh Diều

Dưới đây là lời giải chi tiết cho từng phần của bài 18 trang 100 SBT Toán 11 Cánh Diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, dễ hiểu, kèm theo các giải thích chi tiết để bạn có thể nắm bắt được bản chất của bài toán.

Câu a)

(Nội dung câu a và lời giải chi tiết)

Câu b)

(Nội dung câu b và lời giải chi tiết)

Câu c)

(Nội dung câu c và lời giải chi tiết)

Mẹo giải nhanh và lưu ý quan trọng

Để giải nhanh các bài tập về vectơ, bạn có thể áp dụng một số mẹo sau:

  • Sử dụng các công thức: Nắm vững và áp dụng linh hoạt các công thức liên quan đến tích vô hướng, độ dài vectơ, v.v.
  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Phân tích bài toán: Xác định các yếu tố đã cho, yêu cầu của bài toán và mối liên hệ giữa chúng.

Ngoài ra, bạn cũng cần lưu ý một số điểm sau:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải toán.

Bài tập tương tự và tài liệu tham khảo

Để củng cố kiến thức và rèn luyện kỹ năng giải toán, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 Cánh Diều và các tài liệu tham khảo khác. Dưới đây là một số gợi ý:

  • Giải bài tập các trang khác trong SBT Toán 11 Cánh Diều.
  • Tìm kiếm các bài giảng trực tuyến về vectơ trong không gian.
  • Tham gia các diễn đàn, nhóm học tập trực tuyến để trao đổi kiến thức và kinh nghiệm.

Kết luận

Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh mà Tusach.vn đã cung cấp, bạn sẽ tự tin hơn khi giải bài 18 trang 100 SBT Toán 11 Cánh Diều và các bài tập tương tự. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN