Tusach.vn xin giới thiệu lời giải chi tiết bài 50 trang 110 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng nhất để hỗ trợ học sinh trong quá trình học tập.
Cho hình hộp \(ABCD.A'B'C'D'\) có \(ABCD\) là hình thoi cạnh \(a\)
Đề bài
Cho hình hộp \(ABCD.A'B'C'D'\) có \(ABCD\) là hình thoi cạnh \(a\), \(AA' \bot \left( {ABCD} \right)\), \(AA' = 2a\), \(AC = a\). Tính khoảng cách:
a) Từ điểm \(A\) đến mặt phẳng \(\left( {BCC'B'} \right)\).
b) Giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {CDD'C'} \right)\).
c*) Giữa hai đường thẳng \(BD\) và \(A'C\).
Phương pháp giải - Xem chi tiết
a) Gọi \(H\) là trung điểm của cạnh \(BC\). Ta chứng minh \(H\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {BCC'B'} \right)\), từ đó khoảng cách cần tìm là đoạn thẳng \(AH\).
b) Gọi \(I\) là trung điểm của cạnh \(DC\). Do \(\left( {ABB'A'} \right)\parallel \left( {DCC'D'} \right)\), nên khoảng cách giữa hai mặt phẳng này là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {DCC'D'} \right)\). Ta chứng minh \(I\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {DCC'D'} \right)\), từ đó khoảng cách cần tìm là đoạn thẳng \(AI\).
c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Gọi \(E\) là hình chiếu của \(O\) trên \(A'C\). Ta chứng minh \(OE\) là đường vuông góc chung của 2 đường thẳng \(BD\) và \(A'C\), từ đó khoảng cách cần tính là đoạn thẳng \(OE\).
Lời giải chi tiết

a) Gọi \(H\) là trung điểm của cạnh \(BC\). Tam giác \(ABC\) đều (\(AB = BC = AC = a\)) nên ta suy ra \(AH \bot BC\).
Do \(BB' \bot \left( {ABCD} \right)\), ta suy ra \(BB' \bot AH\).
Như vậy, do \(AH \bot BC\), \(BB' \bot AH\) nên \(AH \bot \left( {BCC'B'} \right)\), điều này có nghĩa \(H\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {BCC'B'} \right)\). Vậy khoảng cách từ \(A\) đến \(\left( {BCC'B'} \right)\) là đoạn thẳng \(AH\).
Tam giác \(ABC\) đều cạnh \(a\), đường cao \(AH\) nên \(AH = \frac{{a\sqrt 3 }}{2}\).
Vậy khoảng cách từ \(A\) đến \(\left( {BCC'B'} \right)\) là \(\frac{{a\sqrt 3 }}{2}\).
b) Do \(ABCD.A'B'C'D'\) là hình hộp, nên \(\left( {ABB'A'} \right)\parallel \left( {DCC'D'} \right)\). Suy ra khoảng cách giữa hai mặt phẳng này cũng bằng khoảng cách từ \(A\) đến mặt phẳng \(\left( {DCC'D'} \right)\).
Gọi \(I\) là trung điểm của cạnh \(DC\). Tam giác \(ADC\) có \(AB = DC = AC = a\) nên nó là tam giác đều. Suy ra \(AI \bot DC\) và \(AI = \frac{{a\sqrt 3 }}{2}\).
Do \(DD' \bot \left( {ABCD} \right)\), ta suy ra \(DD' \bot AI\). Như vậy, do \(AI \bot DC\), \(DD' \bot AI\) nên \(AI \bot \left( {DCC'D'} \right)\). Điều này có nghĩa \(I\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {DCC'D'} \right)\). Vậy khoảng cách giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {DCC'D'} \right)\), bằng khoảng cách từ \(A\) trên mặt phẳng \(\left( {DCC'D'} \right)\), là đoạn thẳng \(AI\), và bằng \(\frac{{a\sqrt 3 }}{2}\).
c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Do \(ABCD\) là hình thoi nên \(AC \bot BD\) và \(AO = \frac{{AC}}{2} = \frac{a}{2}\)
Do \(AA' \bot \left( {ABCD} \right)\), nên \(AA' \bot BD\). Như vậy, do \(AC \bot BD\), \(AA' \bot BD\) nên \(\left( {AA'C} \right) \bot BD\).
Gọi \(E\) là hình chiếu của \(O\) trên \(A'C\). Vì \(OE \subset \left( {AA'C} \right)\), \(\left( {AA'C} \right) \bot BD\) nên \(OE \bot BD\). Như vậy \(OE\) là đường vuông góc chung của 2 đường thẳng \(BD\) và \(A'C\), điều này có nghĩa khoảng cách giữa \(BD\) và \(A'C\) là đoạn thẳng \(OE\).
Tam giác \(CEO\) và \(CAA'\) có chung góc \(C\) và có góc vuông \(\widehat {CEO} = \widehat {CAA'}\) nên chúng đồng dạng với nhau. Suy ra \(\frac{{OE}}{{AA'}} = \frac{{CO}}{{CA'}} \Rightarrow OE = \frac{{AA'.CO}}{{CA'}}\)
Tam giác \(AA'C\) vuông tại \(A\), nên \(A'C = \sqrt {A'{A^2} + A{C^2}} = \sqrt {{{\left( {2a} \right)}^2} + {a^2}} = a\sqrt 5 \).
Do đó \(OE = \frac{{AA'.OC}}{{A'C}} = \frac{{2a.\frac{a}{2}}}{{a\sqrt 5 }} = \frac{{a\sqrt 5 }}{5}\).
Bài 50 trang 110 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm số hợp, và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 50 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 50 trang 110 SBT Toán 11 Cánh Diều, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hàm số y = x3 - 3x2 + 2. Tính đạo hàm y' của hàm số.
Lời giải:
y' = 3x2 - 6x
Tìm cực trị của hàm số y = x3 - 3x2 + 2.
Lời giải:
Để giải các bài tập về đạo hàm một cách hiệu quả, các em học sinh cần:
Tusach.vn là website chuyên cung cấp lời giải chi tiết các bài tập Toán từ lớp 6 đến lớp 12. Chúng tôi luôn cập nhật những nội dung mới nhất và chất lượng nhất để giúp các em học sinh học tập hiệu quả. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Công thức | Mô tả |
|---|---|
| (xn)' = nxn-1 | Đạo hàm của lũy thừa |
| (u + v)' = u' + v' | Đạo hàm của tổng |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập