Chào mừng các em học sinh đến với lời giải chi tiết bài 44 trang 23 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải dễ hiểu và các lưu ý quan trọng để giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
Đề bài
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
a) \(y = \sin x\) trên khoảng \(\left( { - \frac{{19\pi }}{2}; - \frac{{17\pi }}{2}} \right)\); \(\left( { - \frac{{13\pi }}{2}; - \frac{{11\pi }}{2}} \right)\)
b) \(y = \cos x\) trên khoảng \(\left( {19\pi ;20\pi } \right)\); \(\left( { - 30\pi ; - 29\pi } \right)\)
Phương pháp giải - Xem chi tiết
Với \(k \in \mathbb{Z}\), ta có:
+ Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\).
+ Hàm số \(y = \cos x\) đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Chọn các giá trị \(k\) phù hợp.
Lời giải chi tiết
Với \(k \in \mathbb{Z}\), ta có:
+ Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\).
+ Hàm số \(y = \cos x\) đồng biến trên mỗi khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Chọn \(k = - 5\), ta có hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( { - \frac{{19\pi }}{2}; - \frac{{17\pi }}{2}} \right)\).
Chọn \(k = - 3\), ta có hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( { - \frac{{13\pi }}{2}; - \frac{{11\pi }}{2}} \right)\).
Chọn \(k = 10\), ta có hàm số \(y = \cos x\) đồng biến trên khoảng \(\left( {19\pi ;20\pi } \right)\).
Chọn \(k = - 15\), ta có hàm số \(y = \cos x\) nghịch biến trên khoảng \(\left( { - 30\pi ; - 29\pi } \right)\).
Bài 44 trang 23 SBT Toán 11 Cánh Diều thuộc chương trình học môn Toán lớp 11, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng các kiến thức về hàm số lượng giác, đồ thị hàm số lượng giác, phương trình lượng giác và các phép biến đổi lượng giác để giải quyết các bài toán cụ thể.
Bài 44 bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 44 trang 23 SBT Toán 11 Cánh Diều, chúng ta sẽ đi vào giải chi tiết từng bài tập:
Đề bài: Xác định tập xác định của hàm số y = tan(2x + π/3).
Giải: Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Từ đó, ta có:
2x ≠ π/2 + kπ - π/3 = π/6 + kπ
x ≠ π/12 + kπ/2, với k là số nguyên.
Vậy, tập xác định của hàm số là D = {x | x ≠ π/12 + kπ/2, k ∈ Z}.
Đề bài: Tìm tập giá trị của hàm số y = 2sin(x) + 1.
Giải: Vì -1 ≤ sin(x) ≤ 1, với mọi x, nên -2 ≤ 2sin(x) ≤ 2. Do đó, -1 ≤ 2sin(x) + 1 ≤ 3.
Vậy, tập giá trị của hàm số là [-1, 3].
Tusach.vn là website cung cấp đầy đủ các tài liệu học tập môn Toán 11, bao gồm:
Hãy truy cập tusach.vn để học tập và ôn luyện môn Toán 11 hiệu quả!
| Công thức | Mô tả |
|---|---|
| sin2(x) + cos2(x) = 1 | Công thức lượng giác cơ bản |
| tan(x) = sin(x) / cos(x) | Định nghĩa hàm tan |
| cot(x) = cos(x) / sin(x) | Định nghĩa hàm cot |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập