Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 37 trang 112 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, dễ hiểu và phù hợp với chương trình học Toán 11 hiện hành.
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(BC\), \(B'C'\).
Đề bài
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(BC\), \(B'C'\). Khẳng định nào sau đây là đúng?
A. \(\left( {A'MN} \right)\parallel \left( {ACC'} \right)\)
B. \(\left( {A'BN} \right)\parallel \left( {AC'M} \right)\)
C. \(C'M\parallel \left( {A'B'B} \right)\)
D. \(BN\parallel \left( {ACC'A'} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất về đường thẳng song song với mặt phẳng, các tính chất về hai mặt phẳng song song.
Lời giải chi tiết

Ta nhận xét rằng \(A' \in \left( {A'MN} \right)\) và \(A' \in \left( {ACC'A'} \right)\), nên hai mặt phẳng \(\left( {A'MN} \right)\) và \(\left( {ACC'} \right)\) có điểm chung, tức là chúng không song song với nhau.
Xét hai mặt phẳng \(\left( {A'BN} \right)\) và \(\left( {AC'M} \right)\). Do \(M\) và \(N\) lần lượt là trung điểm của \(BC\) và \(B'C'\), nên ta có \(BM = C'N = \frac{1}{2}BC\). Hơn nữa, do \(BC\parallel B'C'\) nên tứ giác \(BMC'N\) là hình bình hành. Suy ra \(BN\parallel C'M\), mà do \(C'M \subset \left( {AC'M} \right)\) nên \(BN\parallel \left( {AC'M} \right)\).
Mặt khác, vì \(M\) và \(N\) lần lượt là trung điểm của \(BC\) và \(B'C'\) nên \(MN\parallel BB'\) và \(MN = BB'\). Do \(ABC.A'B'C'\) là lăng trụ tam giác, nên \(BB'\parallel AA'\) và \(BB' = AA'\). Từ đó ta có \(MN = AA'\) và \(MN\parallel AA'\). Điều này có nghĩa tứ giác \(A'NMA\) là hình bình hành. Suy ra \(A'N\parallel AM\). Do \(AM \subset \left( {AC'M} \right)\) nên \(A'N\parallel \left( {AC'M} \right)\). Vậy \(\left( {A'BN} \right)\parallel \left( {AC'M} \right)\).
Xét mặt phẳng \(\left( {BCC'B'} \right)\), ta thấy rằng \(BB'\) và \(CM\) cắt nhau, mà do \(BB' \subset \left( {A'B'B} \right)\) nên \(CM\) và \(\left( {A'B'B} \right)\) có điểm chung, tức là chúng không song song với nhau.
Chứng minh tương tự, ta cũng suy ra \(BN\) và \(\left( {ACC'A'} \right)\) không song song với nhau.
Đáp án đúng là B.
Bài 37 trang 112 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.
Bài 37 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 37. Lưu ý rằng, việc nắm vững các khái niệm và quy tắc đạo hàm là rất quan trọng để giải quyết bài tập này.
Bài tập: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1
Lời giải:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:
Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về bài 37 trang 112 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt!
| Quy tắc | Công thức |
|---|---|
| Đạo hàm của hằng số | d/dx (c) = 0 |
| Đạo hàm của hàm số lũy thừa | d/dx (xn) = nxn-1 |
| Đạo hàm của hàm số tuyến tính | d/dx (cx) = c |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập