Tusach.vn xin giới thiệu lời giải chi tiết bài 49 trang 79 sách bài tập Toán 11 Cánh Diều. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ học sinh trong quá trình học tập.
Cho hàm số \(f\left( x \right) = \frac{{2x - 3}}{{x + 4}}\) có đồ thị \(\left( C \right)\).
Đề bài
Cho hàm số \(f\left( x \right) = \frac{{2x - 3}}{{x + 4}}\) có đồ thị \(\left( C \right)\).
a) Tìm đạo hàm của hàm số.
b) Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng \( - 3.\)
c) Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm có tung độ bằng \(1.\)
Phương pháp giải - Xem chi tiết
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
Lời giải chi tiết
a) \(f'\left( x \right) = {\left( {\frac{{2x - 3}}{{x + 4}}} \right)^\prime } = \frac{{2\left( {x + 4} \right) - \left( {2x - 3} \right)}}{{{{\left( {x + 4} \right)}^2}}} = \frac{{11}}{{{{\left( {x + 4} \right)}^2}}}.\)
b) Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị có hoành độ bằng \( - 3.\)
\( \Rightarrow {x_0} = - 3;{\rm{ }}{y_0} = - 9 \Rightarrow M\left( { - 3; - 9} \right).\)
\( \Rightarrow f'\left( { - 3} \right) = \frac{{11}}{{{{\left( { - 3 + 4} \right)}^2}}} = 11.\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( { - 3; - 9} \right)\) là:
\(y = f'\left( { - 3} \right)\left( {x - \left( { - 3} \right)} \right) + f\left( { - 3} \right) \Leftrightarrow y = 11.\left( {x + 3} \right) - 9 \Leftrightarrow y = 11x + 24.\)
c) Gọi \(N\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị có tung độ bằng \(1.\)
\(\begin{array}{l} \Rightarrow {y_0} = 1 \Rightarrow \frac{{2{x_0} - 3}}{{{x_0} + 4}} = 1 \Leftrightarrow 2{x_0} - 3 = {x_0} + 4 \Leftrightarrow {x_0} = 7 \Rightarrow N\left( {7;1} \right).\\ \Rightarrow f'\left( 7 \right) = \frac{{11}}{{{{\left( {7 + 4} \right)}^2}}} = \frac{1}{{11}}.\end{array}\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(N\left( {7;1} \right)\) là:
\(y = f'\left( 7 \right)\left( {x - 7} \right) + f\left( 7 \right) \Leftrightarrow y = \frac{1}{{11}}\left( {x - 7} \right) + 1 \Leftrightarrow y = \frac{1}{{11}}x + \frac{4}{{11}}.\)
Bài 49 trang 79 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất về quan hệ song song, vuông góc giữa đường thẳng và mặt phẳng để giải quyết các bài toán thực tế.
Bài 49 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 49 trang 79 SBT Toán 11 Cánh Diều, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:
Đề bài: Cho hình chóp S.ABCD. Chứng minh rằng AB song song với mặt phẳng (SCD).
Lời giải:
Đề bài: Tính góc giữa đường thẳng SA và mặt phẳng (ABCD).
Lời giải:
Để giải tốt các bài tập về đường thẳng và mặt phẳng, các em cần:
Tusach.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục kiến thức. Ngoài lời giải chi tiết bài 49 trang 79 SBT Toán 11 Cánh Diều, chúng tôi còn cung cấp đầy đủ lời giải các bài tập khác trong sách bài tập Toán 11 Cánh Diều và các môn học khác. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất!
| Chương | Bài | Nội dung |
|---|---|---|
| 1 | 49 | Đường thẳng và mặt phẳng trong không gian |
| 2 | 50 | ... |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập