1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 31 trang 55 sách bài tập toán 11 - Cánh diều

Giải bài 31 trang 55 sách bài tập toán 11 - Cánh diều

Giải bài 31 trang 55 SBT Toán 11 Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 31 trang 55 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

A. \({u_n} = {5^n}\)

B. \({u_n} = 1 + 5n\)

C. \({u_n} = {5^n} + 1\)

D. \({u_n} = 5 + {n^2}\)

Phương pháp giải - Xem chi tiếtGiải bài 31 trang 55 sách bài tập toán 11 - Cánh diều 1

Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân khi thương \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không đổi với mọi \(n \ge 1\) và \({u_n} \ne 0\).

Lời giải chi tiết

Nhận xét rằng trong mỗi dãy số đã cho, tất cả các số hạng đều khác 0.

a) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n}\) là cấp số nhân.

b) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + 5\left( {n + 1} \right)}}{{1 + 5n}} = \frac{{6 + 5n}}{{1 + 5n}}\)

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + 5n\) không là cấp số nhân.

c) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + {5^{n + 1}}}}{{1 + {5^n}}}\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n} + 1\) không là cấp số nhân.

d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5 + {{\left( {n + 1} \right)}^2}}}{{5 + {n^2}}} = \frac{{{n^2} + 2n + 6}}{{{n^2} + 5}}\)

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 5 + {n^2}\) không là cấp số nhân.

Giải bài 31 trang 55 SBT Toán 11 Cánh Diều: Tổng quan và Phương pháp

Bài 31 trang 55 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản, đạo hàm của hàm hợp, và đạo hàm của hàm lượng giác để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức lý thuyết và kỹ năng tính toán là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung chi tiết bài 31 trang 55 SBT Toán 11 Cánh Diều

Bài 31 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số đơn giản: Yêu cầu tính đạo hàm của các hàm số đa thức, phân thức, và hàm mũ.
  • Dạng 2: Tính đạo hàm của hàm hợp: Yêu cầu tính đạo hàm của các hàm số được tạo thành từ việc hợp của nhiều hàm số khác nhau.
  • Dạng 3: Tính đạo hàm của hàm lượng giác: Yêu cầu tính đạo hàm của các hàm sin, cos, tan, cot.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số: Xác định phương trình tiếp tuyến của đồ thị hàm số tại một điểm cho trước.

Lời giải chi tiết bài 31 trang 55 SBT Toán 11 Cánh Diều

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 31 trang 55 SBT Toán 11 Cánh Diều:

Câu a)

Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1

Lời giải:

f'(x) = 6x + 2

Câu b)

Đề bài: Tính đạo hàm của hàm số g(x) = sin(2x)

Lời giải:

g'(x) = 2cos(2x)

Câu c)

Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1)3

Lời giải:

h'(x) = 3(x2 + 1)2 * 2x = 6x(x2 + 1)2

Mẹo giải bài tập đạo hàm hiệu quả

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của xn, sin(x), cos(x), ex, ln(x),...
  2. Sử dụng quy tắc đạo hàm của hàm hợp một cách linh hoạt: f'(g(x)) = f'(g(x)) * g'(x)
  3. Thực hành thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng tính toán.
  4. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách tính đạo hàm ngược hoặc thay các giá trị cụ thể vào hàm số.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 11:

  • Sách giáo khoa Toán 11
  • Các trang web học Toán trực tuyến như Tusach.vn
  • Các video bài giảng trên YouTube

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ tự tin hơn khi giải bài 31 trang 55 SBT Toán 11 Cánh Diều và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN