1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 41 trang 22 sách bài tập toán 11 - Cánh diều

Giải bài 41 trang 22 sách bài tập toán 11 - Cánh diều

Giải bài 41 trang 22 SBT Toán 11 Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 41 trang 22 sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về bài học.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Tìm tập xác định của các hàm số sau:

Đề bài

Tìm tập xác định của các hàm số sau:

a) \(y = \sqrt {1 + \sin 3x} \)

b) \(y = \frac{{\sin 2x}}{{\sqrt {1 - \cos x} }}\)

c) \(y = \frac{{\sqrt {1 + \cos 2x} }}{{\sin x}}\)

d) \(y = \frac{1}{{\sin x + \cos x}}\)

e) \(y = \frac{1}{{1 + \sin x\cos x}}\)

g) \(y = \sqrt {\cos x - 1} \)

Phương pháp giải - Xem chi tiếtGiải bài 41 trang 22 sách bài tập toán 11 - Cánh diều 1

a) Hàm số xác định khi \(1 + \sin 3x \ge 0\).

Xác định miền giá trị của \(1 + \sin 3x\) và kết luận.

b) Hàm số xác định khi \(\left\{ \begin{array}{l}1 - \cos x \ge 0\\\sqrt {1 - \cos x} \ne 0\end{array} \right. \Leftrightarrow 1 - \cos x > 0\).

Chứng minh \(1 - \cos x \ge 0\), rồi chỉ ra điều kiện xác định của hàm số sẽ là \(1 - \cos x \ne 0\).

c) Hàm số xác định khi \(\left\{ \begin{array}{l}1 + \cos 2x \ge 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \sin x \ne 0\).

Tìm các giá trị của \(x\) để \(\sin x \ne 0\), và kết luận.

d) Hàm số xác định khi: \(\sin x + \cos x \ne 0\).

Áp dụng công thức \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\) để đưa điều kiện xác định của hàm số trở thành \(\sin \left( {x + \frac{\pi }{4}} \right) \ne 0\).

Do đó \(x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{4} + k\pi \)

e) Hàm số xác định khi \(1 + \sin x\cos x \ge 0\)

Chứng minh rằng với \(\forall x \in \mathbb{R}\) thì \(\sin x\cos x = \frac{{\sin 2x}}{2}\)

Từ đó suy ra \(1 + \sin x\cos x > 0\).

f) Hàm số xác định khi \(\cos x - 1 \ge 0 \Leftrightarrow \cos x \ge 1\).

Do \(\cos x \le 1\) với \(\forall x \in \mathbb{R}\), nên điều kiện xác định tương đương với \(\cos x = 1\).

Lời giải chi tiết

a) Hàm số xác định khi \(1 + \sin 3x \ge 0\).

Với \(\forall x \in \mathbb{R}\), ta thấy \(\sin 3x \ge - 1 \Leftrightarrow 1 + \sin 3x \ge 0\).

Do đó, tập xác định của hàm số là \(D = \mathbb{R}\).

b) Hàm số xác định khi \(\left\{ \begin{array}{l}1 - \cos x \ge 0\\\sqrt {1 - \cos x} \ne 0\end{array} \right. \Leftrightarrow 1 - \cos x > 0\).

Ta thấy với \(\forall x \in \mathbb{R}\), \(\cos x \le 1 \Leftrightarrow - \cos x \ge - 1 \Leftrightarrow 1 - \cos x \ge 0\), nên điều kiện xác định của hàm số sẽ tương đương với \(1 - \cos x \ne 0 \Leftrightarrow \cos x \ne 1 \Leftrightarrow x \ne k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).

c) Hàm số xác định khi \(\left\{ \begin{array}{l}1 + \cos 2x \ge 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \sin x \ne 0\).

Ta có \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {k\pi |k \in \mathbb{Z}} \right\}\).

d) Hàm số xác định khi: \(\sin x + \cos x \ne 0\).

Ta có \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\)

Do đó, điều kiện xác định của hàm số tương đương với:

 \(\frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right) \ne 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) \ne 0 \Leftrightarrow x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\)

Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)

e) Hàm số xác định khi \(1 + \sin x\cos x \ge 0\)

Ta thấy với \(\forall x \in \mathbb{R}\) thì \(\sin 2x = 2\sin x\cos x \Leftrightarrow \sin x\cos x = \frac{{\sin 2x}}{2}\).

Do \(\sin 2x \ge - 1 \Rightarrow \frac{{\sin 2x}}{2} \ge \frac{{ - 1}}{2} \Rightarrow 1 + \frac{{\sin 2x}}{2} \ge 1 + \frac{{ - 1}}{2} = \frac{1}{2} > 0\)

Từ đó suy ra \(1 + \sin x\cos x > 0\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\).

f) Hàm số xác định khi \(\cos x - 1 \ge 0 \Leftrightarrow \cos x \ge 1\).

Do \(\cos x \le 1\) với \(\forall x \in \mathbb{R}\), nên điều kiện xác định tương đương với \(\cos x = 1\).

\( \Leftrightarrow x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Vậy tập xác định của hàm số là \(D = \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).

Giải bài 41 trang 22 SBT Toán 11 Cánh Diều: Tổng quan

Bài 41 trang 22 sách bài tập Toán 11 Cánh Diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học. Bài tập này thường yêu cầu học sinh chứng minh đẳng thức vectơ, tìm tọa độ của vectơ, hoặc giải quyết các bài toán liên quan đến hình học sử dụng vectơ.

Nội dung chi tiết bài 41 trang 22 SBT Toán 11 Cánh Diều

Để giải quyết bài 41 trang 22 SBT Toán 11 Cánh Diều một cách hiệu quả, các em cần nắm vững các kiến thức sau:

  • Khái niệm vectơ: Định nghĩa, các yếu tố của vectơ, sự bằng nhau của hai vectơ.
  • Các phép toán vectơ: Phép cộng, phép trừ, phép nhân với một số thực.
  • Tọa độ của vectơ: Cách biểu diễn vectơ bằng tọa độ trong hệ tọa độ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các tính chất hình học, tìm tọa độ của các điểm và đường thẳng.

Lời giải chi tiết bài 41 trang 22 SBT Toán 11 Cánh Diều

Dưới đây là lời giải chi tiết cho từng phần của bài 41 trang 22 SBT Toán 11 Cánh Diều. (Lưu ý: Nội dung lời giải cụ thể sẽ phụ thuộc vào từng câu hỏi trong bài tập.)

Ví dụ minh họa (Giả định một phần của bài tập):

Câu a: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC
  3. Vậy, AB + AC = 2AM (đpcm)

Mẹo giải bài tập vectơ hiệu quả

  • Vẽ hình: Vẽ hình minh họa giúp các em hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Sử dụng quy tắc hình bình hành: Quy tắc hình bình hành là công cụ hữu ích để cộng và trừ vectơ.
  • Biến đổi vectơ: Sử dụng các phép biến đổi vectơ để đưa bài toán về dạng quen thuộc.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 11, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11
  • Sách bài tập Toán 11
  • Các trang web học Toán trực tuyến uy tín (ví dụ: tusach.vn)
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Hy vọng với lời giải chi tiết và những lời khuyên hữu ích trên, các em sẽ tự tin giải quyết bài 41 trang 22 SBT Toán 11 Cánh Diều và đạt kết quả tốt trong môn học. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN