Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 41 trang 113 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng cao, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.
Cho hình lăng trụ tam giác (ABC.A'B'C'). Gọi (M) là trung điểm của (A'C').
Đề bài
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M\) là trung điểm của \(A'C'\).
a) Chứng minh rằng \(A'B\parallel \left( {B'CM} \right)\).
b) Xác định giao tuyến \(d\) của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\).
Phương pháp giải - Xem chi tiết
a) Gọi \(N\) là trung điểm cạnh \(BC'\). Chứng minh rằng \(MN\parallel A'B\), rồi suy ra điều phải chứng minh.
b) Chỉ ra rằng hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) chứa hai đường thẳng song song và chung điểm \(B\), từ đó xác định được giao tuyến của hai mặt phẳng này.
Lời giải chi tiết

a) Gọi \(N\) là trung điểm cạnh \(BC'\). Do \(M\) là trung điểm cạnh \(A'C'\) nên \(MN\) là đường trung bình của tam giác \(A'BC'\). Suy ra \(A'B\parallel MN\).
Do \(MN \subset \left( {B'MC} \right)\), nên \(A'B\parallel \left( {B'MC} \right)\). Bài toán được chứng minh.
b) Ta có \(AC\parallel A'C'\), \(A'C' \subset \left( {A'BC'} \right)\), \(AC \subset \left( {ABC} \right)\) nên giao tuyến của hai mặt phẳng này (nếu có) là một đường thẳng song song hoặc trùng với \(AC\).
Mặt khác, do \(B \in \left( {ABC} \right) \cap \left( {A'BC'} \right)\), nên ta kết luận rằng \(\left( {ABC} \right)\) và \(\left( {A'BC'} \right)\) có giao tuyến là đường thẳng \(d\) đi qua \(B\) và song song với \(AC\) (trên hình vẽ).
Bài 41 trang 113 sách bài tập Toán 11 Cánh Diều thuộc chương trình học về vectơ trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, tích vô hướng, và các tính chất liên quan để giải quyết các bài toán hình học không gian.
Bài 41 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ xem xét một ví dụ cụ thể. Giả sử bài 41 yêu cầu chứng minh đẳng thức vectơ AB + CD = AD + CB. Lời giải có thể như sau:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 41 trang 113 sách bài tập Toán 11 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao!
| Công thức quan trọng | Mô tả |
|---|---|
| Tích vô hướng | a.b = |a||b|cos(θ) |
| Độ dài vectơ | |a| = √(x2 + y2 + z2) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập