Phương trình lượng giác là một trong những chủ đề quan trọng của chương trình Toán 11. Việc nắm vững lý thuyết phương trình lượng giác cơ bản là điều kiện cần thiết để giải quyết các bài toán phức tạp hơn và đạt kết quả tốt trong các kỳ thi.
Bài viết này của tusach.vn sẽ cung cấp một cách hệ thống và dễ hiểu nhất về lý thuyết phương trình lượng giác cơ bản, bao gồm các định nghĩa, công thức, và phương pháp giải các phương trình lượng giác thường gặp.
I. Phương trình tương đương
I. Phương trình tương đương
1. Khái niệm phương trình tương đương
- Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.
- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết \(f(x) = 0 \Leftrightarrow g(x) = 0\)
2. Các phép biến đổi tương đương
- Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.
- Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
II. Phương trình lượng giác cơ bản
1. Phương trình \({\mathop{\rm s}\nolimits} {\rm{inx}} = m\)
Phương trình sinx = m có nghiệm khi và chỉ khi \( - 1 \le m \le 1\).
Khi \( - 1 \le m \le 1\)sẽ tồn tại duy nhất \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thoả mãn \(\sin \alpha = m\). Khi đó:
\({\mathop{\rm s}\nolimits} {\rm{inx}} = m \Leftrightarrow \sin x = \sin \alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
* Chú ý:
a, Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì \(\sin x = \sin {\alpha ^o} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^o} + k{360^o}\\x = {180^o} - {\alpha ^o} + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b,Một số trường hợp đặc biệt
\(\begin{array}{l}\sin x = 0 \Leftrightarrow x = k\pi ,k \in \mathbb{Z}.\\\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\\\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\end{array}\)
2. Phương trình \({\rm{cosx}} = m\)
Phương trình \({\rm{cosx}} = m\) có nghiệm khi và chỉ khi\( - 1 \le m \le 1\).
Khi \( - 1 \le m \le 1\)sẽ tồn tại duy nhất \(\alpha \in \left[ {0;\pi } \right]\) thoả mãn \({\rm{cos}}\alpha = m\). Khi đó:
\({\rm{cosx}} = m \Leftrightarrow {\rm{cosx}} = {\rm{cos}}\alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
* Chú ý:
a, Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì \(\cos x = \cos {\alpha ^o} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^o} + k{360^o}\\x = - {\alpha ^o} + k{360^o}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b, Một số trường hợp đặc biệt
\(\begin{array}{l}{\rm{cos}}x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\\{\rm{cos}}x = 1 \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}.\\{\rm{cos}}x = - 1 \Leftrightarrow x = \pi + k2\pi ,k \in \mathbb{Z}.\end{array}\)
3. Phương trình \(\tan x = m\)
Phương trình \(\tan x = m\) có nghiệm với mọi m.
Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\). Khi đó:
\(\tan {\rm{x}} = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)
*Chú ý: Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì
\(\tan x = \tan {\alpha ^o} \Leftrightarrow x = {\alpha ^o} + k{180^o},k \in \mathbb{Z}.\)
4. Phương trình \(\cot x = m\)
Phương trình \(\cot x = m\) có nghiệm với mọi m.
Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( {0;\pi } \right)\) thoả mãn \(\cot \alpha = m\). Khi đó:
\(\cot {\rm{x}} = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)
*Chú ý: Nếu số đo của góc \(\alpha \)được cho bằng đơn vị độ thì
\(\cot x = \cot {\alpha ^o} \Leftrightarrow x = {\alpha ^o} + k{180^o},k \in \mathbb{Z}.\)
III. Giải phương trình lượng giác cơ bản bằng máy tính cầm tay
Bước 1. Chọn đơn vị đo góc (độ hoặc radian).
Muốn tìm số đo độ, ta ấn: SHIFT \( \to \)MODE \( \to \)3 (CASIO FX 570VN).
Muốn tìm số đo radian, ta ấn: SHIFT \( \to \)MODE \( \to \)4 (CASIO FX 570VN).
Bước 2. Tìm số đo góc.
Khi biết SIN, COS, TANG của góc \(\alpha \)ta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc \(\alpha \)

Phương trình lượng giác là phương trình có chứa ẩn số trong biểu thức lượng giác. Việc giải phương trình lượng giác đòi hỏi kiến thức vững chắc về các công thức lượng giác cơ bản, các giá trị lượng giác của các góc đặc biệt, và các phương pháp biến đổi lượng giác.
Phương trình sin(x) = a có nghiệm khi -1 ≤ a ≤ 1. Nghiệm của phương trình là:
Phương trình cos(x) = a có nghiệm khi -1 ≤ a ≤ 1. Nghiệm của phương trình là:
Phương trình tan(x) = a có nghiệm là:
Phương trình cot(x) = a có nghiệm là:
Ví dụ 1: Giải phương trình sin(x) = 1/2
Ta có: x = arcsin(1/2) + k2π = π/6 + k2π hoặc x = π - arcsin(1/2) + k2π = 5π/6 + k2π (k ∈ Z)
Ví dụ 2: Giải phương trình cos(x) = -√2/2
Ta có: x = arccos(-√2/2) + k2π = 3π/4 + k2π hoặc x = -arccos(-√2/2) + k2π = 5π/4 + k2π (k ∈ Z)
Để củng cố kiến thức, hãy giải các bài tập sau:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về lý thuyết phương trình lượng giác cơ bản. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập