Bài 3.2 thuộc chương trình Toán 11 tập 1, tập trung vào việc vận dụng kiến thức về hàm số và đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản và kỹ năng giải toán liên quan.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ bản chất của bài toán và tự tin làm bài tập.
Tìm các giới hạn:
Đề bài
Tìm các giới hạn:
a, \(\lim ({n^3} - {n^4} + 2n)\)
b, \(\lim (\sqrt {{n^2} + 4} + n)\)
c, \(\lim \frac{{{5^n} + 2}}{{{3^n} + {2^n}}}\)
Phương pháp giải - Xem chi tiết
Phân tích các biểu thức tính giới hạn thành tích trong đó có chứa n với số mũ lớn nhất và áp dụng các tình chất của giới hạn vô cực.
Lời giải chi tiết
a, Ta có: \({n^3} - {n^4} + 2n = {n^4}.(\frac{1}{n} - 1 + \frac{2}{{{n^3}}})\)
Vì \(\lim ({n^4}) = + \infty \) và \(\lim (\frac{1}{n} - 1 + \frac{2}{{{n^3}}}) = - 1\) nên \(\lim ({n^3} - {n^4} + 2n) = - \infty \).
b, Ta có: \((\sqrt {{n^2} + 4} + n) = (n\sqrt {1 + \frac{4}{{{n^2}}}} + n) = n(\sqrt {1 + \frac{4}{{{n^2}}}} + 1)\)
Vì \(\lim n = + \infty \) và \(\lim (\sqrt {1 + \frac{4}{{{n^2}}}} + 1) = 2\) nên \(\lim (\sqrt {{n^2} + 4} + n) = + \infty \).
c, Ta có: \(\frac{{{5^n} + 2}}{{{3^n} + {2^n}}} = \frac{{1 + \frac{2}{{{5^n}}}}}{{{{\left( {\frac{3}{5}} \right)}^n} + {{\left( {\frac{2}{5}} \right)}^n}}}\)
Vì \(\lim (1 + \frac{2}{{{5^n}}}) = 1\) và \(\lim \left[ {{{\left( {\frac{3}{5}} \right)}^n} + {{\left( {\frac{4}{5}} \right)}^n}} \right] = 0\) nên \(\lim \frac{{{5^n} + 2}}{{{3^n} + {2^n}}} = + \infty \).
Bài 3.2 trang 64 SGK Toán 11 tập 1 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số và đạo hàm. Bài tập này thường yêu cầu học sinh phải xác định tập xác định của hàm số, tính đạo hàm, và tìm các điểm cực trị của hàm số.
Bài tập thường có dạng như sau: Cho hàm số y = f(x). Hãy:
Để giải bài tập này, học sinh cần thực hiện các bước sau:
Bài tập: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm các điểm cực trị của hàm số.
Lời giải:
Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về bài tập này:
Kết luận: Bài 3.2 trang 64 SGK Toán 11 tập 1 là một bài tập quan trọng, giúp học sinh củng cố kiến thức về hàm số và đạo hàm. Bằng cách thực hiện các bước giải chi tiết và luyện tập thường xuyên, học sinh có thể tự tin giải quyết bài tập này.
Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập