Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 22, 23, 24, 25 SGK Toán 11 tập 1. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em hiểu rõ kiến thức và tự tin giải quyết các bài tập.
Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và những lưu ý quan trọng để các em có thể nắm vững nội dung bài học.
Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau:
Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau:
\(x = \frac{\pi }{2};x = - \frac{\pi }{4};x = \frac{{11\pi }}{3};x = - 2,5.\)
Phương pháp giải:
Sử dụng máy tính cầm tay tính \(\sin \frac{\pi }{2},\cos \frac{\pi }{2},\sin \left( { - \frac{\pi }{4}} \right),\cos \left( { - \frac{\pi }{4}} \right),\sin \frac{{11\pi }}{3},\cos \frac{{11\pi }}{3},\sin \left( { - 2,5} \right),\cos \left( { - 2,5} \right)\).
Lời giải chi tiết:
\(\begin{array}{l}\cos \frac{\pi }{2} = 0,\sin \frac{\pi }{2} = 1\\\cos \frac{{ - \pi }}{4} = \frac{{\sqrt 2 }}{2},\sin \frac{{ - \pi }}{4} = - \frac{{\sqrt 2 }}{2}\\\cos \frac{{11\pi }}{3} = \frac{1}{2},\sin \frac{{11\pi }}{3} = - \frac{{\sqrt 3 }}{2}\\\cos \left( { - 2,5} \right) \approx - 0,8,\sin \left( { - 2,5} \right) = - 0,6\end{array}\)
Tính giá trị của hàm số \(y = \sin x\) và hàm số \(y = \cos x\) khi \(x = \frac{{3\pi }}{2};x = - \frac{{11\pi }}{4};x = \frac{{14\pi }}{3}.\)
Phương pháp giải:
Sử dụng máy tính cầm tay tính \(\sin \frac{{3\pi }}{2},\cos \frac{{3\pi }}{2},\sin \left( { - \frac{{11\pi }}{4}} \right),\cos \left( { - \frac{{11\pi }}{4}} \right),\sin \frac{{14\pi }}{3},\cos \frac{{14\pi }}{3}\).
Lời giải chi tiết:
\(\begin{array}{l}y = \cos \frac{{3\pi }}{2} = 0,y = \sin \frac{{3\pi }}{2} = - 1\\y = \cos \frac{{ - 11\pi }}{4} = - \frac{{\sqrt 2 }}{2},y = \sin \frac{{ - 11\pi }}{4} = - \frac{{\sqrt 2 }}{2}\\y = \cos \frac{{14\pi }}{3} = - \frac{1}{2},y = \sin \frac{{14\pi }}{3} = \frac{{\sqrt 3 }}{2}\end{array}\)
Phương trình li độ của một vật dao động điều hòa có dạng: \(x = - 6\cos \left( {\pi t + \frac{\pi }{6}} \right)\), trong đó x (cm) là li độ của vật (hay độ dời của vật so với vị trí cân bằng) tại thời điểm t (giây). Tính li độ của vật tại thời điểm t = 3 giây.
Phương pháp giải:
Thay t = 3 vào phương trình li độ.
Lời giải chi tiết:
Thay t = 3 vào phương trình li độ, ta có:
\(x = - 6\cos \left( {\pi .3 + \frac{\pi }{6}} \right) = - 6\cos \left( {\frac{{19\pi }}{6}} \right) = 3\sqrt 3 \)
Vậy li độ tại thời điểm t = 3 giây là \(3\sqrt 3 \)(cm).
Tính tang và côtang của góc lượng giác có số đo bằng x trong các trường hợp sau:
\(x = \frac{{7\pi }}{3};x = - \frac{{5\pi }}{4};x = \frac{{11\pi }}{6};x = - 3.\)
Phương pháp giải:
Sử dụng máy tính cầm tay tính \(\tan \frac{{7\pi }}{3},\cot \frac{{7\pi }}{3},\tan \left( { - \frac{{5\pi }}{4}} \right),\cot \left( { - \frac{{5\pi }}{4}} \right),\tan \frac{{11\pi }}{6},\cot \frac{{11\pi }}{6},\tan \left( { - 3} \right),\cot \left( { - 3} \right)\).
Lời giải chi tiết:
\(\begin{array}{l}\tan \frac{{7\pi }}{3} = \sqrt 3 ,\cot \frac{{7\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{5\pi }}{4}} \right) = - 1,\cot \left( { - \frac{{5\pi }}{4}} \right) = - 1\\\tan \frac{{11\pi }}{6} = - \frac{{\sqrt 3 }}{3},\cot \frac{{11\pi }}{6} = - \sqrt 3 \\\tan \left( { - 3} \right) \approx 0,14;\cot \left( { - 3} \right) \approx 7,02\end{array}\)
Tính giá trị của hàm số \(y = \tan x\) và hàm số \(y = \cot x\) khi \(x = \frac{{13\pi }}{3};x = - \frac{{9\pi }}{4};x = \frac{{19\pi }}{6}.\)
Phương pháp giải:
Sử dụng máy tính cầm tay tính \(\tan \frac{{13\pi }}{3},\cot \frac{{13\pi }}{3},\tan \left( { - \frac{{9\pi }}{4}} \right),\cot \left( { - \frac{{9\pi }}{4}} \right),\tan \frac{{19\pi }}{6},\cot \frac{{19\pi }}{6}\).
Lời giải chi tiết:
\(\begin{array}{l}\tan \frac{{13\pi }}{3} = \sqrt 3 ,\cot \frac{{13\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{9\pi }}{4}} \right) = - 1,\cot \left( { - \frac{{9\pi }}{4}} \right) = - 1\\\tan \frac{{19\pi }}{6} = \frac{{\sqrt 3 }}{3},\cot \frac{{19\pi }}{6} = \sqrt 3 \end{array}\)
a) So sánh các giá trị \(\sin x\) và \(\sin \left( { - x} \right)\), \(\cos x\) và \(\cos \left( { - x} \right)\).
b) So sánh các giá trị \(\tan x\) và \(\tan \left( { - x} \right)\) khi \(x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
c) So sánh các giá trị \(\cot x\) và \(\cot \left( { - x} \right)\) khi \(x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).
Phương pháp giải:
Áp dụng công thức lượng giác giữa 2 góc đối nhau.
Lời giải chi tiết:
a)
\(\begin{array}{l}\sin \left( { - x} \right) = - \sin x\\\cos \left( { - x} \right) = \cos x\end{array}\)
b) \(\tan \left( { - x} \right) = - \tan x\)
c) \(\cot \left( { - x} \right) = \cot x\)
Xác định tính chẵn, lẻ của hàm số \(y = f\left( x \right) = \sin x - \tan x.\)
Phương pháp giải:
So sánh\(f\left( { - x} \right)\) và \(f\left( x \right)\).
Lời giải chi tiết:
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow - x \in D\end{array}\)
\(f\left( { - x} \right) = \sin \left( { - x} \right) - \tan \left( { - x} \right) = - \sin x + \tan x = - \left( {\sin x - \tan x} \right) = - f\left( x \right)\)
Vậy hàm số đã cho là hàm số lẻ.
Tìm một số \(T \ne 0\) sao cho \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số sau:
a) \(f\left( x \right) = \sin x;\)
b) \(f\left( x \right) = \cos x;\)
c) \(f\left( x \right) = \tan x;\)
d) \(f\left( x \right) = \cot x.\)
Phương pháp giải:
Dựa vào tính chất
\(\begin{array}{l}\sin \left( {\alpha + k2\pi } \right) = \sin \alpha \\\cos \left( {\alpha + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha + k\pi } \right) = \cot \alpha \end{array}\)
Tìm ra T, từ đó chứng minh \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số.
Lời giải chi tiết:
a)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi \in D,x - 2\pi \in D\\f\left( {x + 2\pi } \right) = \sin \left( {x + 2\pi } \right) = \sin x = f\left( x \right)\end{array}\)
b)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi \in D,x - 2\pi \in D\\f\left( {x + 2\pi } \right) = \cos \left( {x + 2\pi } \right) = \cos x = f\left( x \right)\end{array}\)
c)
\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = \tan \left( {x + \pi } \right) = \tan x = f\left( x \right)\end{array}\)
d)
\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = \cot \left( {x + \pi } \right) = \cot x = f\left( x \right)\end{array}\)
Chứng minh hàm số \(y = f\left( x \right) = 1 - \cot x\) là hàm số tuần hoàn.
Phương pháp giải:
Chỉ ra \(f\left( {x + T} \right) = f\left( x \right)\) với T khác 0 là chu kì tuần hoàn.
Lời giải chi tiết:
\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = 1 - \cot \left( {x + \pi } \right) = 1 - \cot x = f\left( x \right)\end{array}\)
Vậy hàm số đã cho là hàm số tuần hoàn.
Mục 2 của SGK Toán 11 tập 1 thường xoay quanh các chủ đề về phép biến hình, bao gồm phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các kiến thức này là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình khi thực hiện phép tịnh tiến. Để giải bài tập này, các em cần hiểu rõ công thức của phép tịnh tiến: x' = x + a, y' = y + b, trong đó (a, b) là vectơ tịnh tiến.
Bài tập này thường liên quan đến việc xác định ảnh của một điểm khi thực hiện phép quay quanh một tâm cho trước với một góc quay nhất định. Các em cần sử dụng công thức của phép quay để giải bài tập này.
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình khi thực hiện phép đối xứng trục. Các em cần nhớ rằng ảnh của một điểm M qua đường thẳng d là điểm M' sao cho d là đường trung trực của đoạn thẳng MM'.
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình khi thực hiện phép đối xứng tâm. Các em cần nhớ rằng ảnh của một điểm M qua điểm I là điểm M' sao cho I là trung điểm của đoạn thẳng MM'.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho tất cả các bài tập trong SGK Toán 11 tập 1. Chúng tôi hy vọng rằng với sự hỗ trợ của Tusach.vn, các em sẽ học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.
| Bài tập | Trang | Lời giải |
|---|---|---|
| Bài 1 | 22 | Xem lời giải |
| Bài 2 | 23 | Xem lời giải |
| Bài 3 | 24 | Xem lời giải |
| Bài 4 | 25 | Xem lời giải |
Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập