Bài 7.9 thuộc chương trình Toán 11 tập 2, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và phương pháp giải bài tập này một cách hiệu quả.
Nếu một quả bóng được ném lên từ vị trí cách mặt đất 1 mét với vận tốc đầu là 24,5 m/s thì chiều cao của quả bóng sau t giây ( trước khi quả bóng chạm đất)
Đề bài
Nếu một quả bóng được ném lên từ vị trí cách mặt đất 1 mét với vận tốc đầu là 24,5 m/s thì chiều cao của quả bóng sau t giây ( trước khi quả bóng chạm đất) được tính bởi \(h(t) = 1 + 24,5t - 4,9{t^2}\). Biết rằng vận tốc của quả bóng tại thời điểm t được tính bởi \(v(t) = {h'}(t)\)
a, Tính vận tốc của quả bóng sau 1 giây và sau 3 giây
b, Tại thời điểm quả bóng rơi xuống còn cách mặt đất 1m thì vận tốc của nó bằng bao nhiêu?

Phương pháp giải - Xem chi tiết
Tính \(v(t) = {h'}(t)\) và thay t=1 và t=3
Cho h(t)=1 để tìm t. Từ đó xác định được vận tốc của quả bóng
Lời giải chi tiết
a, Ta có: \(v(t) = {h'}(t) = {(1 + 24,5t - 4,9{t^2})'} = 24,5 - 9,8t\)
Thay t =1 và t =3 ta được:
\(v(1) = 24,5 - 9,8.1 = 24,5 - 9,8 = 14,7\)m/s
\(v(3) = 24,5 - 9,8.3 = 24,5 - 29,4 = - 5,1\)
b, Ta có: h(t)=1\( \Rightarrow 1 + 24,5t - 4,9{t^2} = 1 \Rightarrow t.(24,5 - 4,9t) = 0 \Rightarrow \left[ \begin{array}{l}t = 0\\t = 5\end{array} \right.\)
\(v(5) = 24,5 - 9,8.5 = 24,5 - 49 = - 24,5\)
Bài 7.9 trang 45 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 7.9 yêu cầu học sinh khảo sát hàm số và tìm các điểm cực trị, khoảng đồng biến, nghịch biến. Cụ thể, bài tập thường cho một hàm số và yêu cầu:
Để giải bài 7.9, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cho là: f(x) = x3 - 3x2 + 2
Bước 1: Tập xác định: D = R
Bước 2: Đạo hàm bậc nhất: f'(x) = 3x2 - 6x
Bước 3: Giải f'(x) = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 4: Xét dấu f'(x):
| Khoảng | f'(x) | Kết luận |
|---|---|---|
| (-∞, 0) | + | Đồng biến |
| (0, 2) | - | Nghịch biến |
| (2, +∞) | + | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Điểm x = 0 là điểm cực đại, x = 2 là điểm cực tiểu.
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về cách giải bài 7.9 trang 45 SGK Toán 11 tập 2 và đạt kết quả tốt trong học tập. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập