Bài 4.3 trang 94 SGK Toán 11 tập 1 thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các quy tắc tính đạo hàm và áp dụng chúng một cách linh hoạt.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho bốn điểm không đồng phẳng A, B, C, D. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AB, CD.
Đề bài
Cho bốn điểm không đồng phẳng A, B, C, D. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AB, CD.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (MCD).
b) Gọi I và K lần lượt là điểm trên đoạn thẳng AC và AD. Tìm giao tuyến của hai mặt phẳng (MCD) và (BIK).
Phương pháp giải - Xem chi tiết
Tìm giao tuyến của hai mặt phẳng (P) và (Q)
Tìm 2 điểm chung A, B của 2 mặt phẳng đó. AB chính là giao tuyến của (P) và (Q).
Chú ý: Thường tìm 2 đường thẳng đồng phẳng lần lượt nằm trong (P) và (Q). Nếu chúng cắt nhau tại 1 điểm thì đó là điểm chung của (P) và (Q).
Lời giải chi tiết

a)
\(\begin{array}{l}\left\{ \begin{array}{l}M \in AB\\AB \subset \left( {ABN} \right)\end{array} \right. \Rightarrow M \in \left( {ABN} \right)\\\left\{ \begin{array}{l}N \in CD\\CD \subset \left( {MCD} \right)\end{array} \right. \Rightarrow N \in \left( {MCD} \right)\\ \Rightarrow \left( {ABN} \right) \cap \left( {MCD} \right) = MN\end{array}\)
b)
\(\begin{array}{l}\left\{ \begin{array}{l}MD \cap BK = E\\MD \subset \left( {MCD} \right)\\BK \subset \left( {BIK} \right)\end{array} \right. \Rightarrow E \in \left( {MCD} \right) \cap \left( {BIK} \right)\\\left\{ \begin{array}{l}MC \cap BI = F\\MC \subset \left( {MCD} \right)\\BI \subset \left( {BIK} \right)\end{array} \right. \Rightarrow F \in \left( {MCD} \right) \cap \left( {BIK} \right)\\ \Rightarrow EF = \left( {MCD} \right) \cap \left( {BIK} \right)\end{array}\)
Bài 4.3 trang 94 SGK Toán 11 tập 1 là một bài tập quan trọng trong chương trình học Toán 11, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến sự biến thiên của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Bài 4.3 thường yêu cầu học sinh xét sự biến thiên của một hàm số cho trước bằng cách:
Giả sử bài tập yêu cầu xét sự biến thiên của hàm số f(x) = x3 - 3x2 + 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | ↗ | ↘ | ↗ |
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả và đạt kết quả cao!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập