1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 7.18 trang 50 SGK Toán 11 tập 2 - Cùng khám phá

Bài 7.18 trang 50 SGK Toán 11 tập 2 - Cùng khám phá

Bài 7.18 Trang 50 SGK Toán 11 Tập 2: Cùng khám phá

Bài 7.18 trang 50 SGK Toán 11 tập 2 thuộc chương trình Đại số và Giải tích lớp 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu cùng với phương pháp giải bài tập để giúp các em học sinh nắm vững kiến thức và tự tin làm bài.

Một vật dao động điều hòa có phương trình \(x = 4\cos \pi t\) (\(x\) tính bằng \(cm\), \(t\) tính bằng giây).

Đề bài

Một vật dao động điều hòa có phương trình \(x = 4\cos \pi t\) (\(x\) tính bằng \(cm\), \(t\) tính bằng giây).

a) Tính vận tốc của vật tại thời điểm \(t = 0,75\) giây

b) Tìm thời điểm đầu tiên vật có gia tốc lớn nhất.

Phương pháp giải - Xem chi tiếtBài 7.18 trang 50 SGK Toán 11 tập 2 - Cùng khám phá 1

a) Vận tốc chính là đạo hàm của \(x\)

Áp dụng công thức \(\left( {\cos u} \right)' = - u'.\sin u;\,\,\,\left( {\sin u} \right)' = u'.\cos u\)

b) Gia tốc là đạo hàm cấp hai của \(x\)

Áp dụng công thức \( - 1 \le \sin u \le 1;\,\, - 1 \le \cos u \le 1\)

Lời giải chi tiết

a) Vận tốc của vật là \(v = x' = \left( {4\cos \pi t} \right)' = - 4\sin \pi t.\left( {\pi t} \right)' = - 4\pi \sin \pi t\)

Vận tốc của vật tại thời điểm \(t = 0,75\) giây là \(v\left( {0,75} \right) = - 4\pi .\sin 0,75\pi = - 2\sqrt 2 \pi \)

b) Gia tốc của vật là \(a = x'' = \left( { - 4\pi \sin \pi t} \right)' = - 4\pi \cos \pi t.\left( {\pi t} \right)' = - 4{\pi ^2}\cos \pi t\)

Ta có \( - 1 \le \cos \pi t \le 1 \Leftrightarrow 4{\pi ^2} \ge - 4{\pi ^2}\cos \pi t \ge - 4{\pi ^2} \Leftrightarrow 4{\pi ^2} \ge a \ge - 4{\pi ^2}\)

Vậy gia tốc lớn nhất bằng \(a = 4{\pi ^2}\) khi \(\cos \pi t = - 1\)

Vậy tại thời điểm đầu tiên là \(t = 1\) thì vật có gia tốc lớn nhất

Bài 7.18 Trang 50 SGK Toán 11 Tập 2: Giải Chi Tiết và Phân Tích

Bài 7.18 trang 50 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và phân tích bài tập này:

Nội dung bài tập:

Bài tập yêu cầu tính đạo hàm của hàm số và sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số. Cụ thể, bài tập có thể yêu cầu:

  • Tính đạo hàm f'(x) của hàm số f(x).
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến và nghịch biến của hàm số.
  • Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên một khoảng cho trước.

Lời giải chi tiết:

Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Tính đạo hàm f'(x). Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số f(x).
  2. Bước 2: Tìm các điểm cực trị. Giải phương trình f'(x) = 0 để tìm các điểm cực trị của hàm số.
  3. Bước 3: Xác định khoảng đồng biến và nghịch biến. Xét dấu đạo hàm f'(x) trên các khoảng xác định của hàm số để xác định khoảng đồng biến và nghịch biến.
  4. Bước 4: Tìm giá trị lớn nhất và nhỏ nhất. Sử dụng các điểm cực trị và giá trị của hàm số tại các điểm biên để tìm giá trị lớn nhất và nhỏ nhất của hàm số trên một khoảng cho trước.

Ví dụ minh họa:

Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  3. Xác định khoảng đồng biến và nghịch biến:
    • Trên khoảng (-∞, 0), f'(x) > 0, hàm số đồng biến.
    • Trên khoảng (0, 2), f'(x) < 0, hàm số nghịch biến.
    • Trên khoảng (2, +∞), f'(x) > 0, hàm số đồng biến.
  4. Tìm giá trị lớn nhất và nhỏ nhất: Tại x = 0, f(0) = 2. Tại x = 2, f(2) = -2.

Lưu ý quan trọng:

  • Nắm vững các quy tắc tính đạo hàm.
  • Hiểu rõ ý nghĩa của đạo hàm trong việc xác định tính đơn điệu và cực trị của hàm số.
  • Thực hành giải nhiều bài tập khác nhau để rèn luyện kỹ năng.

Tài liệu tham khảo:

Ngoài SGK Toán 11 tập 2, các em có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 11.
  • Các trang web học Toán trực tuyến như tusach.vn.
  • Các video hướng dẫn giải bài tập Toán 11 trên YouTube.

Kết luận: Bài 7.18 trang 50 SGK Toán 11 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bằng cách thực hiện các bước giải chi tiết và luyện tập thường xuyên, các em sẽ nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN