Bài 6.22 thuộc chương trình Toán 11 tập 2, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến phép biến hình. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép biến hình cho trước.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững phương pháp giải và tự tin làm bài tập.
Giải các phương trình:
Đề bài
Giải các phương trình:
a) \({2^{2{x^2} + 5x + 4}} = 4\)
b) \({3^{x + 4}} + {3.5^{x + 3}} = {5^{x + 4}} + {3^{x + 3}}\)
c) \(\log \frac{{x - 8}}{{x - 1}} = \log x\)
d) \({\log _7}\left( {x - 1} \right).{\log _7}x = {\log _7}x\)
Phương pháp giải - Xem chi tiết
a) Đưa về cùng cơ số.
b) Nhóm các lũy thừa có cùng cơ số.
c) \(b = {\log _a}A \Leftrightarrow {\log _a}A = {\log _a}B \Leftrightarrow \left\{ \begin{array}{l}A > 0\\B > 0\\A = B\end{array} \right.\)
d) Áp dụng: \({\log _a}b = c \Leftrightarrow {a^c} = b\)
Lời giải chi tiết
a)
\(\begin{array}{l}{2^{2{x^2} + 5x + 4}} = 4\\ \Leftrightarrow {2^{^{2{x^2} + 5x + 4}}} = {2^2}\\ \Leftrightarrow 2{x^2} + 5x + 4 = 2\\ \Leftrightarrow 2{x^2} + 5x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = - \frac{1}{2}\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm là x = -2, x = -1/2
b)
\(\begin{array}{l}{3^{x + 4}} + {3.5^{x + 3}} = {5^{x + 4}} + {3^{x + 3}}\\ \Leftrightarrow {3^{x + 4}} - {3^{x + 3}} = {5^{x + 4}} - {3.5^{x + 3}}\\ \Leftrightarrow {3^{x + 3}}\left( {3 - 1} \right) = {5^{x + 3}}\left( {5 - 3} \right)\\ \Leftrightarrow {2.3^{x + 3}} = {2.5^{x + 3}}\\ \Leftrightarrow {3^{x + 3}} = {5^{x + 3}}\\ \Leftrightarrow x + 3 = 0\\ \Leftrightarrow x = - 3\end{array}\)
Vậy phương trình có nghiệm là x = -3
c) ĐK: \(\left\{ \begin{array}{l}x > 0\\\frac{{x + 8}}{{x - 1}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\\left[ \begin{array}{l}x > 1\\x < - 8\end{array} \right.\end{array} \right. \Leftrightarrow x > 0\)
\(\begin{array}{l}\log \frac{{x + 8}}{{x - 1}} = \log x\\ \Leftrightarrow \frac{{x + 8}}{{x - 1}} = x\\ \Leftrightarrow x - 8 = {x^2} - x\\ \Leftrightarrow {x^2} - 2x + 8 = 0\end{array}\)
Vậy phương trình vô nghiệm
d) ĐK: \(\left\{ \begin{array}{l}x - 1 > 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x > 0\end{array} \right. \Leftrightarrow x > 1\)
\(\begin{array}{l}{\log _7}\left( {x - 1} \right).{\log _7}x = {\log _7}x\\ \Leftrightarrow {\log _7}\left( {x - 1} \right) = 1\\ \Leftrightarrow x - 1 = 7\\ \Leftrightarrow x = 8\left( {{\rm{TM}}} \right)\end{array}\)
Vậy phương trình có nghiệm x = 8
Bài 6.22 trang 30 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về phép biến hình, đặc biệt là phép tịnh tiến, phép quay và phép vị tự. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các công thức liên quan.
Bài tập thường yêu cầu:
Bài toán: Trong mặt phẳng tọa độ Oxy, cho điểm A(1; 2). Tìm ảnh A' của điểm A qua phép tịnh tiến theo vectơ v = (3; -1).
Giải:
Sử dụng công thức phép tịnh tiến: A'(x' ; y') = A(x; y) + v(a; b) = (x + a; y + b)
Thay các giá trị vào, ta có: A'(1 + 3; 2 - 1) = A'(4; 1)
Vậy, ảnh A' của điểm A qua phép tịnh tiến theo vectơ v = (3; -1) là A'(4; 1).
Ngoài SGK Toán 11 tập 2, học sinh có thể tham khảo thêm các tài liệu sau:
Kết luận: Bài 6.22 trang 30 SGK Toán 11 tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài toán về phép biến hình. Bằng cách nắm vững kiến thức cơ bản, áp dụng phương pháp giải đúng đắn và luyện tập thường xuyên, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập