Bài 6.17 thuộc chương trình Toán 11 tập 2, tập trung vào việc vận dụng kiến thức về phép biến hình và các tính chất của chúng để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Giải các phương trình
Đề bài
Giải các phương trình
a) \({\log _{\sqrt 2 }}\left( {6x + 1} \right) = 4\)
b) \({\log _3}\left( {x + 2} \right) = {\log _3}\left( {{x^2} - 4} \right)\)
c) \({\log _2}\left( {x - 5} \right) + {\log _2}\left( {x + 2} \right) = 3\)
d) \(\ln \left( {x - 1} \right) + \ln \left( {2x - 11} \right) = \ln 2\)
Phương pháp giải - Xem chi tiết
\(b = {\log _a}A \Leftrightarrow {\log _a}A = {\log _a}B \Leftrightarrow \left\{ \begin{array}{l}A > 0\\B > 0\\A = B\end{array} \right.\)
Lời giải chi tiết
a) ĐK: \(6x + 1 > 0 \Leftrightarrow x > - \frac{1}{6}\)
\(\begin{array}{l}{\log _{\sqrt 2 }}\left( {6x + 1} \right) = 4\\ \Leftrightarrow {\log _{\sqrt 2 }}\left( {6x + 1} \right) = {\log _{\sqrt 2 }}4\\ \Leftrightarrow 6x + 1 = 4\\ \Leftrightarrow x = \frac{1}{2}\left( {{\rm{TM}}} \right)\end{array}\)
Vậy phương trình có nghiệm là x = \(\frac{1}{2}\)
b) ĐK: \(\left\{ \begin{array}{l}x + 2 > 0\\{x^2} - 4 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 2\\\left[ \begin{array}{l}x > 2\\x < - 2\end{array} \right.\end{array} \right. \Leftrightarrow x > 2\)
\(\begin{array}{l}{\log _3}\left( {x + 2} \right) = {\log _3}\left( {{x^2} - 4} \right)\\ \Leftrightarrow x + 2 = {x^2} - 4\\ \Leftrightarrow {x^2} - x - 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\left( {{\rm{TM}}} \right)\\x = - 2\left( {\rm{L}} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm là x = 3
c) ĐK: \(\left\{ \begin{array}{l}2x - 5 > 0\\x + 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \frac{5}{2}\\x > - 2\end{array} \right. \Leftrightarrow x > \frac{5}{2}\)
\(\begin{array}{l}{\log _2}\left( {x - 5} \right) + {\log _2}\left( {x + 2} \right) = 3\\ \Leftrightarrow {\log _2}\left[ {\left( {x - 5} \right)\left( {x + 2} \right)} \right] = 3\\ \Leftrightarrow {x^2} - 3x - 10 = 8\\ \Leftrightarrow {x^2} - 3x - 18 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 6\left( {{\rm{TM}}} \right)\\x = - 3\left( {\rm{L}} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm là x = 6
d) ĐK: \(\left\{ \begin{array}{l}x - 1 > 0\\2x - 11 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x > \frac{{11}}{2}\end{array} \right. \Leftrightarrow x > \frac{{11}}{2}\)
\(\begin{array}{l}\ln \left( {x - 1} \right) + \ln \left( {2x - 11} \right) = \ln 2\\ \Leftrightarrow \ln \left[ {\left( {x - 1} \right)\left( {2x - 11} \right)} \right] = \ln 2\\ \Leftrightarrow 2{x^2} - 13x + 11 = 2\\ \Leftrightarrow 2{x^2} - 13x + 9 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x \approx 5,7\\x \approx 0,8\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm là \(x \approx 5,7\); \(x \approx 0,8\)
Bài 6.17 trang 26 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về phép biến hình, đặc biệt là phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Bài tập này không chỉ giúp củng cố lý thuyết mà còn rèn luyện khả năng tư duy logic và giải quyết vấn đề.
Bài tập thường yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua một phép biến hình cho trước. Đôi khi, bài tập còn yêu cầu chứng minh một tính chất hình học nào đó bằng cách sử dụng phép biến hình.
Để giải bài tập 6.17 một cách hiệu quả, học sinh cần:
Bài tập: Cho điểm A(1; 2) và phép tịnh tiến theo vectơ v = (3; -1). Tìm tọa độ điểm A' là ảnh của A qua phép tịnh tiến đó.
Giải:
Áp dụng công thức phép tịnh tiến: A'(x' ; y') = A(x; y) + v(a; b) = (x + a; y + b)
Thay số: A'(1 + 3; 2 - 1) = A'(4; 1)
Vậy, tọa độ điểm A' là (4; 1).
Khi giải bài tập 6.17, cần chú ý:
Ngoài SGK Toán 11 tập 2, học sinh có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin hơn khi giải bài tập 6.17 trang 26 SGK Toán 11 tập 2 và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập