Bài 6.12 thuộc chương trình Toán 11 tập 2, tập trung vào việc vận dụng kiến thức về phép biến hình để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các phép biến hình cơ bản như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Cho a, b, c là các số thực dương và khác 1. So sánh a, b, c và 1 trong mỗi trường hợp sau:
Đề bài
Cho a, b, c là các số thực dương và khác 1. So sánh a, b, c và 1 trong mỗi trường hợp sau:

Phương pháp giải - Xem chi tiết
a) Hàm số \(y = {\log _a}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) khi a > 1 và nghịch biến trên khoảng \(\left( {0; + \infty } \right)\) khi 0 < a < 1.
b) Hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\) khi a > 1 và nghịch biến trên \(\mathbb{R}\) khi 0 < a < 1.
Lời giải chi tiết
a) Ta thấy hàm số \(y = {\log _a}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) nên a > 1
Ta thấy hàm số \(y = {\log _b}x\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\) 0 < b < 1
Ta thấy hàm số \(y = {\log _c}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) c > 1
b) Ta thấy hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\) nên a > 1
Ta thấy hàm số \(y = {b^x}\) đồng biến trên \(\mathbb{R}\) nên b > 1
Ta thấy hàm số \(y = {c^x}\) nghịch biến trên \(\mathbb{R}\) nên 0 < c < 1
Bài 6.12 trang 19 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về phép biến hình và ứng dụng vào giải quyết các bài toán hình học. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 6.12 yêu cầu học sinh thực hiện các phép biến hình trên một hình cho trước, xác định ảnh của các điểm và đường thẳng sau khi thực hiện phép biến hình. Bài tập thường yêu cầu sử dụng các phép tịnh tiến, quay, đối xứng trục và đối xứng tâm.
Để giải bài 6.12, học sinh cần nắm vững các kiến thức sau:
Ví dụ, giả sử bài tập yêu cầu thực hiện phép tịnh tiến theo vector v = (2, -1) lên điểm A(1, 3). Khi đó, điểm A' có tọa độ là (1+2, 3-1) = (3, 2).
Để luyện tập thêm, học sinh có thể giải các bài tập tương tự trong SGK Toán 11 tập 2 và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Khi giải bài tập về phép biến hình, học sinh cần chú ý đến các yếu tố sau:
Kết luận: Bài 6.12 trang 19 SGK Toán 11 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về phép biến hình. Bằng cách nắm vững các kiến thức cơ bản và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt môn Toán tại tusach.vn!
| Phép biến hình | Công thức |
|---|---|
| Tịnh tiến | M'(x', y') = M(x+a, y+b) |
| Quay | (Công thức phức tạp hơn, tùy thuộc vào tâm quay và góc quay) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập