Bài 5.17 thuộc chương trình Toán 11 tập 1, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Để chuẩn bị cho đồ án tốt nghiệp, một sinh viên y khoa đã khảo sát huyết áp tối đa của một số bệnh nhân và lập được bảng tần số ghép nhóm sau:
Đề bài
Để chuẩn bị cho đồ án tốt nghiệp, một sinh viên y khoa đã khảo sát huyết áp tối đa của một số bệnh nhân và lập được bảng tần số ghép nhóm sau:

a) Xác định trung bình, trung vị và mốt của mẫu số liệu.
b) Hãy giải thích vì sao trong trường hợp này, cả ba giá trị tìm được đều đại diện tốt cho huyết áp của những bệnh nhân được khảo sát.
Phương pháp giải - Xem chi tiết
+) \(\overline x = \frac{1}{N}\left( {{c_1}{n_1} + {c_2}{n_2} + ... + {c_k}{n_k}} \right)\) với \({c_k},{n_k}\) lần lượt là giá trị đại diện và tần số của nhóm thứ k
\({c_k}\) là trung bình cộng của đầu mút trái và đầu mút phải của nhóm đó.
+) Trung vị \({M_e} = {L_m} + \frac{{\frac{N}{2} - T}}{{{n_m}}}.h\) trong đó \({L_m},{n_m},h\) lần lượt là đầu mút trái, tần số và độ dài của nhóm chứa trung vị. \(T\) là tần số tích lũy của nhóm ngay trước nhóm chứa trung vị.
Nhóm chứa trung vị của mẫu số liệu là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{N}{2}\) , trong đó \(N\) là cỡ mẫu.
+) Công thức tìm mốt của mẫu số liệu ghép nhóm là \({M_0} = {L_m} + \frac{a}{{a + b}}.h\)
Lời giải chi tiết
a)
+) Xác định trung bình
Để ngắn gọn, ta lập bảng sau

Áp dụng công thức tính trung bình ta có \(\overline x = \frac{{23700}}{{152}} \approx 156\)
+) Xác định trung vị
Ta có bảng tần số tích lũy sau

Ta có \(\frac{N}{2} = \frac{{152}}{2} = 76\). Nhóm đầu tiên có tần số tích lũy lớn hơn bằng 76 là \(\left[ {150;170} \right)\)
Ta có \({L_m} = 150\), \(h = 170 - 150 = 20\), \({n_m} = 45\) và \(T = 61\).
Áp dụng công thức tính trung vị ta có \({M_e} = {L_m} + \frac{{\frac{N}{2} - T}}{{{n_m}}}.h = 150 + \frac{{76 - 61}}{{45}}.20 \approx 157\)
+) Xác định mốt
Dựa vào bảng dữ liệu ta có nhóm chứa mốt là \(\left[ {150;170} \right)\) với tần số là 45.
Do đó \({L_m} = 150;h = 170 - 150 = 20;a = 45 - 35 = 10;b = 45 - 30 = 15\)
Áp dụng công thức tính mốt ta có \({M_0} = {L_m} + \frac{a}{{a + b}}.h = 150 + \frac{{10}}{{10 + 15}}.20 = 158\)
b) Dựa vào ba giá trị tìm được \(\overline x = 156,{M_e} = 157,{M_0} = 158\) ta nhận thấy cả ba giá trị tìm được đều đại diện tốt cho huyết áp của những bệnh nhân được khảo sát là vì ba giá trị này xấp xỉ bằng nhau và huyết áp của người bình thường cũng trong khoảng 150 đến 170
Bài 5.17 trang 148 SGK Toán 11 tập 1 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này, được trình bày một cách dễ hiểu và logic.
Bài 5.17 yêu cầu học sinh tính đạo hàm của hàm số và tìm các điểm cực trị của hàm số đó. Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Để giải bài 5.17, ta thực hiện các bước sau:
Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Để củng cố kiến thức về đạo hàm và ứng dụng của nó, bạn có thể làm thêm các bài tập tương tự sau:
tusach.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài 5.17 trang 148 SGK Toán 11 tập 1 này sẽ giúp bạn hiểu rõ hơn về đạo hàm và ứng dụng của nó. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập