Chào mừng các em học sinh đến với lời giải chi tiết mục 3 trang 47, 48, 49 sách giáo khoa Toán 11 tập 1. Bài viết này được tusach.vn biên soạn nhằm hỗ trợ các em trong quá trình tự học và ôn tập môn Toán.
Chúng tôi sẽ cung cấp các bước giải bài tập một cách rõ ràng, dễ hiểu, kèm theo các lưu ý quan trọng để các em có thể nắm vững kiến thức và áp dụng vào các bài tập tương tự.
Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) mà \({u_n} = 1 + \frac{1}{n}\) và \({v_n} = 2 - \frac{1}{n}\) (n là số nguyên dương).
Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) mà \({u_n} = 1 + \frac{1}{n}\) và \({v_n} = 2 - \frac{1}{n}\) (n là số nguyên dương).
a) So sánh \({u_{n + 1}}\) và \({u_n}\).
b) So sánh \({v_{n + 1}}\) và \({v_n}\).
Phương pháp giải:
Thay n = n + 1 vào công thức tổng quát của dãy số. So sánh \({u_{n + 1}} - {u_n}\), \({v_{n + 1}} - {v_n}\) với 0.
Lời giải chi tiết:
a) Ta có: \({u_{n + 1}} - {u_n} = 1 + \frac{1}{{n + 1}} - 1 - \frac{1}{n} = \frac{1}{{n + 1}} - \frac{1}{n} = \frac{{n - \left( {n + 1} \right)}}{{n\left( {n + 1} \right)}} = \frac{ -1}{{n\left( {n + 1} \right)}}\)
Mà n là số nguyên dương nên \(\frac{ -1}{{n\left( {n + 1} \right)}} < 0\)\( \Rightarrow {u_{n + 1}} - {u_n} < 0 \Rightarrow {u_{n + 1}} < {u_n}\).
b) Ta có: \({v_{n + 1}} - {v_n} = 2 - \frac{1}{{n + 1}} - 2 + \frac{1}{n} = \frac{1}{n} - \frac{1}{{n + 1}} = \frac{{n + 1 - n}}{{n\left( {n + 1} \right)}} = \frac{1}{{n\left( {n + 1} \right)}}\)
Mà n là số nguyên dương nên \(\frac{1}{{n\left( {n + 1} \right)}} > 0 \Rightarrow {v_{n + 1}} - {v_n} > 0 \Rightarrow {v_{n + 1}} > {v_n}\).
Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) cho bởi \({u_n} = \frac{{n - 2}}{{3n - 1}},\forall n \in {\mathbb{N}^*}\) là một dãy số tăng.
Phương pháp giải:
So sánh \({u_{n + 1}}\) và \({u_n}\). Nếu \({u_{n + 1}} > {u_n}\forall n\) thì là dãy số tăng.
Lời giải chi tiết:
\(\begin{array}{l}{u_{n + 1}} = \frac{{n + 1 - 2}}{{3(n + 1) - 1}} = \frac{{n - 1}}{{3n + 2}}\\{u_{n + 1}} - {u_n} = \frac{{n - 1}}{{3n + 2}} - \frac{{n - 2}}{{3n - 1}} = \frac{5}{{9{n^2} + 3n - 2}}\\9{n^2} + 3n - 2 > 0\forall n \ge 1 \Rightarrow \frac{5}{{9{n^2} + 3n - 2}} > 0\\ \Rightarrow {u_{n + 1}} - {u_n} > 0\end{array}\)
\(\Rightarrow {u_{n + 1}} > {u_n}\forall n\)
Vậy dãy số đã cho là một dãy số tăng.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\sqrt n }}{{n + 1}}\)
a) So sánh n + 1 và \(2\sqrt n \) .
b) Suy ra: \({u_n} \le \frac{1}{2}\), với mọi số nguyên dương n.
Phương pháp giải:
a) So sánh \(n + 1 - 2\sqrt n \) với 0.
b) Áp dụng phần a.
Lời giải chi tiết:
a) \(n + 1 - 2\sqrt n = {\left( {\sqrt n - 1} \right)^2} \ge 0\forall n \Rightarrow n + 1 \ge 2\sqrt n \)
b) \(n + 1 \ge 2\sqrt n \Rightarrow \frac{{\sqrt n }}{{n + 1}} \le \frac{{\sqrt n }}{{2\sqrt n }} = \frac{1}{2} \Rightarrow {u_n} = \frac{1}{2}\forall n\) nguyên dương
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n - 1}}{{n + 2}}\), với n là số nguyên dương.
a) Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) tăng.
b) Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) bị chặn.
Phương pháp giải:
a) So sánh \({u_{n + 1}}\) và \({u_n}\). Nếu \({u_{n + 1}} > {u_n}\forall n\) thì là dãy số tăng.
b) Dãy số \(\left( {{u_n}} \right)\) bị chặn khi \(m \le {u_n} \le M\forall n\) nguyên dương.
Lời giải chi tiết:
a)
\(\begin{array}{l}{u_n} = \frac{{n - 1}}{{n + 2}} = 1 - \frac{3}{{n + 2}}\\{u_{n + 1}} - {u_n} = 1 - \frac{3}{{n + 3}} - \left( {1 - \frac{3}{{n + 2}}} \right) = \frac{3}{{n + 2}} - \frac{3}{{n + 3}} = 3\left( {\frac{1}{{n + 2}} - \frac{1}{{n + 3}}} \right)\\n + 2 < n + 3 \Rightarrow \frac{1}{{n + 2}} > \frac{1}{{n + 3}} \Leftrightarrow \frac{1}{{n + 2}} - \frac{1}{{n + 3}} > 0 \Leftrightarrow 3\left( {\frac{1}{{n + 2}} - \frac{1}{{n + 3}}} \right) > 0\\ \Rightarrow {u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\end{array}\)
Vậy dãy số đã cho là dãy số tăng.
b) n là số nguyên dương \( \Rightarrow n \ge 1 \Leftrightarrow \left\{ \begin{array}{l}n - 1 \ge 0\\n + 2 > 0\end{array} \right. \Leftrightarrow \frac{{n - 1}}{{n + 2}} \ge 0\)
\(n - 1 < n + 2 \Rightarrow \frac{{n - 1}}{{n + 2}} < 1\)
\( \Rightarrow 0 \le \frac{{n - 1}}{{n + 2}} < 1\forall n\) nguyên dương
Vậy dãy số đã cho là dãy số bị chặn.
Trong một trò chơi của trẻ em, các em nhỏ dùng các viên bi để xếp thành các hình tam giác Fn. Dãy các hình xếp (Fn) tuân theo một quy luật được mô tả trong Hình 2.2. Trong đó F1 chỉ có 1 viên bi, thêm 2 viên bi để được tam giác đều là hình F2, thêm 3 viên bi thẳng hàng và song song với một cạnh của F2 để được tam giác đều F3,… Gọi (un) là dãy số mà un là số viên bi cần dùng để xếp được hình Fn \(\left( {n \in {\mathbb{N}^*}} \right)\). Chẳng hạn \({u_1} = 1,{u_2} = 3,{u_3} = 6\),…
a) Viết sáu số hạng đầu tiên của dãy số (un).
b) Dự đoán công thức truy hồi để tính un.

Phương pháp giải:
Số hạng đứng sau hơn số hạng đứng trước đúng một số bằng số thứ tự của số hạng đứng sau.
Lời giải chi tiết:
a) \({u_1} = 1,{u_2} = 3,{u_3} = 6,{u_4} = 6 + 4 = 10,{u_5} = 10 + 5 = 15,{u_6} = 15 + 6 = 21\)
b) Công tính truy hồi: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + n + 1\end{array} \right.\)
Mục 3 trong SGK Toán 11 tập 1 thường xoay quanh các chủ đề về hàm số lượng giác, phương trình lượng giác, hoặc các bài toán liên quan đến vectơ. Việc nắm vững kiến thức nền tảng và phương pháp giải là vô cùng quan trọng để giải quyết các bài tập một cách hiệu quả.
(Giả sử đây là một bài tập về tìm tập xác định của hàm số lượng giác)
Để tìm tập xác định của hàm số y = f(x), ta cần xác định các giá trị của x sao cho biểu thức f(x) có nghĩa. Trong trường hợp hàm số lượng giác, ta cần chú ý đến mẫu số khác 0 và điều kiện của căn bậc hai (nếu có).
Ví dụ: Nếu hàm số là y = 1/sin(x), thì tập xác định là D = {x | x ≠ kπ, k ∈ Z}.
(Giả sử đây là một bài tập về xét tính chẵn lẻ của hàm số)
Để xét tính chẵn lẻ của hàm số y = f(x), ta cần kiểm tra hai điều kiện sau:
Ví dụ: Hàm số y = cos(x) là hàm số chẵn vì cos(-x) = cos(x). Hàm số y = sin(x) là hàm số lẻ vì sin(-x) = -sin(x).
(Giả sử đây là một bài tập về giải phương trình lượng giác)
Để giải phương trình lượng giác, ta có thể sử dụng các công thức lượng giác cơ bản, biến đổi phương trình về dạng đơn giản, và giải bằng phương pháp đặt ẩn phụ. Ví dụ, để giải phương trình sin(x) = 1/2, ta có thể sử dụng công thức nghiệm của phương trình sin(x) = a.
Tusach.vn luôn đồng hành cùng các em học sinh trong quá trình học tập. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giảng, và lời giải bài tập môn Toán 11. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập