Bài 4.21 thuộc chương trình Toán 11 tập 1, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến vectơ và các phép toán vectơ. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng:
Đề bài
Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng:
a) Hai mặt phẳng (BDA') và (B'D'C) song song với nhau.
b) Đường chéo AC' đi qua các trọng tâm G1 và G2 của hai tam giác BDA' và B'D'C.
c) G1 và G2 chia đoạn AC' thành ba phần bằng nhau.
Phương pháp giải - Xem chi tiết
a) Nếu mặt phẳng (P) chứa 2 đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q).
b) Trọng tâm là giao điểm của các đường trung tuyến.
c) Khoảng cách từ trọng tâm đến mỗi đỉnh bằng 2/3 đường trung tuyến tương ứng của đỉnh đó.
Lời giải chi tiết

a) Ta có: BB' // DD' (cùng // CC') và BB' = DD' (cùng = CC') nên BB'D'D là hình bình hành
Suy ra BD // B'D'. Nên BD // (B'D'C) (1)
BC // A'D' (cùng // AD) và BC = A'D' (cùng = AD) nên BCD'A' là hình bình hành
Suy ra A'B // CD'. Nên A'B // (B'D'C) (2)
Từ (1) và (2) suy ra (BDA') song song với (B'D'C)
b) Gọi O, O' lần lượt là giao điểm của AC và BD, A'C' và B'D'. Suy ra O, O' là trung điểm của AC, A'C'
Gọi I là giao điểm của AC' và A'C
AA' // CC' (cùng // BB') và AA' = CC' (cùng = BB') nên ACC'A' là hình bình hành. Suy ra I là trung điểm của AC' và A'C
Nên AI và A'O là trung tuyến của tam giác AA'C
Mà G1 là trọng tâm tam giác BDA'. Suy ra G1 là giao điểm của AI và A'O
Tương tự, G2 là giao điểm của CO' và C'I
G1 thuộc AI, G2 thuộc CI nên G1 và G2 đều thuộc AC'.
c) G1 và G2 là trọng tâm của hai tam giác BDA' và B'D'C nên \(A{G_1} = \frac{2}{3}AI,{G_1}I = \frac{1}{3}AI\) và \(C'{G_2} = \frac{2}{3}C'I,{G_2}I = \frac{1}{3}CI\)
Ta có: \({G_1}I + {G_2}I = \frac{1}{3}AI + \frac{1}{3}CI = \frac{1}{3}AI + \frac{1}{3}AI = \frac{2}{3}AI\)
Suy ra AG1 = G1G2 = C'G2 (cùng = \(\frac{2}{3}AI\))
Vậy G1 và G2 chia đoạn AC' thành ba phần bằng nhau.
Bài 4.21 trang 114 SGK Toán 11 tập 1 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về vectơ và ứng dụng của chúng trong hình học. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này, cùng với các lưu ý quan trọng để bạn có thể nắm vững kiến thức và tự tin giải các bài tập tương tự.
Bài 4.21 thường yêu cầu học sinh thực hiện các thao tác sau:
(Ở đây sẽ là lời giải chi tiết của bài 4.21, bao gồm các bước giải, giải thích rõ ràng và hình vẽ minh họa nếu cần thiết. Ví dụ:)
Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: AB + AC = 2AM
Giải:
Ngoài bài 4.21, còn rất nhiều bài tập tương tự giúp bạn rèn luyện kỹ năng giải bài toán vectơ. Dưới đây là một số dạng bài tập thường gặp:
Để giải bài tập vectơ hiệu quả, bạn nên:
Để học tốt môn Toán 11, bạn có thể tham khảo thêm các tài liệu sau:
Bài 4.21 trang 114 SGK Toán 11 tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, bạn sẽ tự tin giải bài tập này và các bài tập tương tự. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập