Bài 8.45 thuộc chương trình Toán 11 tập 2, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các công thức đạo hàm cơ bản và kỹ năng áp dụng chúng vào việc tìm đạo hàm của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho tử diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC.
Đề bài
Cho tử diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC. Gọi M là trung điểm của BC. Góc giữa hai đường thẳng OM và AB bằng
A. 900.
B. 300.
C. 600.
D. 450.
Phương pháp giải - Xem chi tiết
Chọn 2 đường thẳng cắt nhau c và d lần lượt song song với a và b. Khi đó góc giữa c và d là góc giữa a và b.
Lời giải chi tiết

Đặt OA = OB = OC = a
Gọi D là trung điểm của AC nên DM // AB và bằng một nửa AB
\( \Rightarrow \widehat {\left( {OM,AB} \right)} = \widehat {\left( {OM,DM} \right)} = \widehat {OMD}\)
Ta có: OA vuông góc và bằng OC nên tam giác OAC là tam giác vuông cân tại C
\(AC = \sqrt {O{A^2} + O{B^2}} = \sqrt 2 a\)
\(\begin{array}{l}AC.OD = OA.OC\\ \Leftrightarrow OD = \frac{{\sqrt 2 }}{2}a\end{array}\)
Tương tự với OM, ta có: \(OM = \frac{{\sqrt 2 }}{2}a\)
\(AB = \sqrt {O{A^2} + O{B^2}} = \sqrt 2 a\)
Suy ra \(DM = \frac{{\sqrt 2 }}{2}a\)
Vậy tam giác DOM đều. Suy ra \(\widehat {OMD} = {60^0}\).
Chọn đáp án C.
Bài 8.45 trang 90 SGK Toán 11 tập 2 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bài tập này thường yêu cầu học sinh tính đạo hàm của một hàm số hoặc giải một phương trình liên quan đến đạo hàm.
Để hiểu rõ hơn về bài tập này, chúng ta cần xem xét nội dung cụ thể của nó. Thông thường, bài tập sẽ đưa ra một hàm số và yêu cầu tính đạo hàm của hàm số đó tại một điểm cụ thể hoặc trên một khoảng xác định. Ngoài ra, bài tập có thể yêu cầu học sinh sử dụng đạo hàm để giải một bài toán tối ưu hóa hoặc tìm cực trị của hàm số.
Để giải bài tập 8.45 trang 90 SGK Toán 11 tập 2 một cách hiệu quả, học sinh cần nắm vững các bước sau:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x + 1. Ta thực hiện như sau:
Để đạt được kết quả tốt nhất khi giải bài tập 8.45 trang 90 SGK Toán 11 tập 2, học sinh cần lưu ý những điều sau:
Đạo hàm không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Ví dụ, đạo hàm được sử dụng để tính vận tốc và gia tốc của một vật thể chuyển động, để tìm điểm cực trị của một hàm số chi phí hoặc lợi nhuận, hoặc để tối ưu hóa thiết kế của một sản phẩm.
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh sẽ tự tin giải bài 8.45 trang 90 SGK Toán 11 tập 2 và nắm vững kiến thức về đạo hàm. Hãy truy cập tusach.vn để xem thêm nhiều bài giải và tài liệu học tập Toán 11 hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập