Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 46, 47 sách giáo khoa Toán 11 tập 2. Bài viết này sẽ giúp các em hiểu rõ hơn về các khái niệm và phương pháp giải bài tập trong chương trình học.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những tài liệu và lời giải chính xác, dễ hiểu nhất.
Một vật chuyển động thẳng với phương trình \(s\left( t \right) = {t^3} + t\), với \(s\) tính bằng mét và \(t\) tính bằng giây
Một vật chuyển động thẳng với phương trình \(s\left( t \right) = {t^3} + t\), với \(s\) tính bằng mét và \(t\) tính bằng giây
a) Tính vận tốc của vật tại thời điểm \(t\).
b) Cho biết gia tốc trung bình (đơn vị \(m/{s^2}\)) của vật trong khoảng thời gian \(\left[ {{t_0};t} \right]\) được tính bởi công thức \({a_{tb}} = \frac{{v\left( t \right) - v\left( {{t_0}} \right)}}{{t - {t_0}}}\). Hãy tính gia tốc trung bình trong các khoảng thời gian \(\left[ {{t_0};t} \right]\) với \({t_0} = 2\) và \(t\) lần lượt là \(2,1\); \(2,01\); \(2,001\). Sau đó, hoàn thành Bảng 7.3.

Phương pháp giải:
a) \(v\left( t \right) = s'\left( t \right)\); công thức tính đạo hàm \(\left( {{x^n}} \right)' = n.{x^{n - 1}}\)
b) Tính \({a_{tb}} = \frac{{v\left( t \right) - v\left( {{t_0}} \right)}}{{t - {t_0}}}\). Sau đó thay \(t\) và \({t_0}\) vào \({a_{tb}}\)
Lời giải chi tiết:
a) Vận tốc của vật tại thời điểm \(t\) là \(v\left( t \right) = s'\left( t \right) = \left( {{t^3} + t} \right)' = 3{t^2} + 1\)
b) \(v\left( t \right) - v\left( {{t_0}} \right) = \left( {3{t^2} + 1} \right) - \left( {3t_0^2 + 1} \right) = 3\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)\)
Suy ra \({a_{tb}} = \frac{{v\left( t \right) - v\left( {{t_0}} \right)}}{{t - {t_0}}} = 3\left( {t + {t_0}} \right)\) tại \({t_0} = 2\) là \({a_{tb}} = 3\left( {t + 2} \right)\)
+) Với \(t = 2,1\) ta có \({a_{tb}} = 3.\left( {2,1 + 2} \right) = 12,3\)
+) Với \(t = 2,01\) ta có \({a_{tb}} = 3.\left( {2,01 + 2} \right) = 12,03\)
+) Với \(t = 2,001\) ta có \({a_{tb}} = 3.\left( {2,001 + 2} \right) = 12,003\)
Vậy ta có bảng sau

Phương trình chuyển động của một con lắc lò xo dao động quanh vị trí cân bằng \(O\) là \(x = 4\cos 2t\), trong đó \(t\) tính bằng giây và \(x\) tính bằng \(cm\). Tính gia tốc của con lắc tại thời điểm \(t\).
Phương pháp giải:
+) \(a\left( t \right) = x''\left( t \right)\)
+) \(\left( {\cos u} \right) = - u'.\sin u;\,\,\,\left( {\sin u} \right) = u'.\cos u\)
Lời giải chi tiết:
Ta có \(x' = \left( {4\cos 2t} \right)' = - 4.\sin 2t.\left( {2t} \right)' = - 8\sin 2t\)
\(a\left( t \right) = x'' = - 8.\cos 2t.\left( {2t} \right)' = - 16\cos 2t\)
Mục 2 trang 46, 47 SGK Toán 11 tập 2 thường xoay quanh các chủ đề về phép biến hình, bao gồm phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các kiến thức này là nền tảng quan trọng để giải quyết các bài toán hình học trong chương trình học.
Để giải các bài tập trong mục 2, các em cần:
Dưới đây là lời giải chi tiết cho một số bài tập tiêu biểu trong mục 2:
Cho điểm A(1; 2) và vector t = (3; -1). Tìm tọa độ điểm A' là ảnh của A qua phép tịnh tiến theo vector t.
Lời giải:
Tọa độ điểm A' được tính theo công thức: A'(x' ; y') = A(x; y) + t(a; b) = (x + a; y + b). Do đó, A'(1 + 3; 2 - 1) = A'(4; 1).
Cho điểm B(2; -3) và tâm quay O(0; 0). Tìm tọa độ điểm B' là ảnh của B qua phép quay tâm O góc 90 độ.
Lời giải:
Công thức quay điểm B(x; y) quanh tâm O(0; 0) góc α là: B'(x'; y') = (x cos α - y sin α; x sin α + y cos α). Với α = 90 độ, cos 90 = 0 và sin 90 = 1. Do đó, B'(2 * 0 - (-3) * 1; 2 * 1 + (-3) * 0) = B'(3; 2).
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em nên:
Mục 2 trang 46, 47 SGK Toán 11 tập 2 là một phần quan trọng trong chương trình học. Việc nắm vững kiến thức và kỹ năng giải bài tập trong mục này sẽ giúp các em tự tin hơn khi làm bài kiểm tra và thi cử. tusach.vn hy vọng bài viết này đã cung cấp cho các em những thông tin hữu ích và giúp các em học tập hiệu quả hơn.
| Phép biến hình | Định nghĩa | Tính chất |
|---|---|---|
| Tịnh tiến | Biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ. | Biến đường thẳng thành đường thẳng song song hoặc trùng nhau. |
| Quay | Biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ. | Biến đường tròn thành đường tròn có cùng bán kính. |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập