1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 3.18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá

Bài 3.18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá

Bài 3.18 trang 80 SGK Toán 11 tập 1

Bài 3.18 thuộc chương trình Toán 11 tập 1, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các quy tắc tính đạo hàm và cách áp dụng chúng vào việc tìm đạo hàm của hàm số.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tìm các giới hạn

Đề bài

Tìm các giới hạn

a) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}}\)

b) \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{{x^2} - 1}}\)

c) \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }}\)

Phương pháp giải - Xem chi tiếtBài 3.18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá 1

a, c Đây là giới hạn một bên của hàm số

Tính giới hạn của tử số và giới hạn của mẫu số rồi áp dụng quy tắc tính giới hạn của một thương

\(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \), với mọi số thực \(a\).

b, Đây là giới hạn một bên của hàm số

Dạng vô định \(\frac{0}{0}\) nên ta phải thực hiện khử dạng vô định

Lời giải chi tiết

a, 

Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {2x + 1} \right) = 2.2 + 1 = 5 > 0\)

Với \(x > 2\) thì \(x - 2 > 0\) và \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} \right) = 0\) do đó \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 1}}{{x - 2}} = + \infty \)

b,

Với \(x < 1\) thì \(\left| {x - 1} \right| = - \left( {x - 1} \right)\)

Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left| {x - 1} \right|}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - \left( {x - 1} \right)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - \left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - 1}}{{x + 1}} = - \frac{1}{2}\)

c, 

Với \(x < 0 \Rightarrow \sqrt {{x^2}} = \left| x \right| = - x\)

Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{ - x}}\)

Ta có \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {2x + 1} \right) = 1 > 0\)

Với \(x < 0\) thì \( - x > 0\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\) dó đó \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{ - x}} = + \infty \)

Vậy \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{2x + 1}}{{\sqrt {{x^2}} }} = + \infty \)

Bài 3.18 Trang 80 SGK Toán 11 Tập 1: Giải Chi Tiết và Hướng Dẫn

Bài 3.18 trang 80 SGK Toán 11 tập 1 là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 3.18 yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 - 3x + 2) / (x + 1)
  • d) y = √(x2 + 1)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng quy tắc đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng quy tắc đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x2 - 3x + 2) / (x + 1)

Áp dụng quy tắc đạo hàm của thương, ta có:

y' = [ (2x - 3)(x + 1) - (x2 - 3x + 2)(1) ] / (x + 1)2 = (2x2 - x - 3 - x2 + 3x - 2) / (x + 1)2 = (x2 + 2x - 5) / (x + 1)2

d) y = √(x2 + 1)

Áp dụng quy tắc đạo hàm của hàm hợp, ta có:

y' = [1 / (2√(x2 + 1))] * (2x) = x / √(x2 + 1)

Lưu ý quan trọng

  • Nắm vững các quy tắc đạo hàm cơ bản: đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Chú ý đến việc áp dụng đúng quy tắc cho từng loại hàm số.
  • Kiểm tra lại kết quả sau khi tính đạo hàm để đảm bảo tính chính xác.

Bài tập tương tự

Để luyện tập thêm, các em có thể giải các bài tập tương tự trong SGK Toán 11 tập 1 và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải bài tập đạo hàm.

Tổng kết

Bài 3.18 trang 80 SGK Toán 11 tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em sẽ tự tin giải bài tập này và các bài tập tương tự một cách hiệu quả. Hãy truy cập tusach.vn để xem thêm nhiều bài giải Toán 11 tập 1 khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN