Chào mừng bạn đến với lời giải chi tiết mục 4 trang 62 SGK Toán 11 tập 2 trên tusach.vn. Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Bài viết này sẽ cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải chi tiết, giúp bạn tự tin hơn trong quá trình học tập môn Toán 11.
Cho hình hộp \(ABCD.A'B'C'D'\) có \(AA' \bot \left( {ABCD} \right)\).
Cho hình hộp \(ABCD.A'B'C'D'\) có \(AA' \bot \left( {ABCD} \right)\).
a) Tìm hình chiếu \(d\) của \(A'C\) trên mặt phẳng \(\left( {ABCD} \right)\). Xác định góc giữa \(A'C\) và \(d\)
b) Tìm hình chiếu \(a\) của \(A'C'\) trên mặt phẳng \(\left( {ABCD} \right)\). Xác định góc giữa \(A'C'\) và \(a\)
Phương pháp giải:
a) Chứng minh \(A'A \bot \left( {ABCD} \right)\) từ đó suy ra \(A'\) là hình chiếu của \(A\) trên \(\left( {ABCD} \right)\)
b) Chứng minh \(CC' \bot \left( {ABCD} \right)\) từ đó suy ra \(C'\) là hình chiếu của \(C\) trên \(\left( {ABCD} \right)\)
Lời giải chi tiết:

a) Vì \(A'A \bot \left( {ABCD} \right)\) nên \(A\) là hình chiếu của \(A'\) trên \(\left( {ABCD} \right)\)
Vậy hình chiếu \(d\) của \(A'C\) trên \(\left( {ABCD} \right)\) là \(AC\)
Góc giữa \(A'C\) và \(AC\) là góc \(\widehat {A'CA}\)
b) Vì \(A'A \bot \left( {ABCD} \right)\) nên \(A\) là hình chiếu của \(A'\) trên \(\left( {ABCD} \right)\)
Vì \(CC' \bot \left( {ABCD} \right)\) nên \(C\) là hình chiếu của \(C'\) trên \(\left( {ABCD} \right)\)
Vậy hình chiếu \(a\) của \(A'C'\) trên \(\left( {ABCD} \right)\) là \(AC\)
Vì \(A'C'//AC\) nên góc giữa \(A'C'\) và \(AC\) bằng \({0^o}\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\), \(SA = a\sqrt 3 \). Xác định và tính góc giữa đường thẳng \(SD\) và \(\left( {SAB} \right)\)
Phương pháp giải:
Xác định giao điểm \(S\) của \(SD\) và \(\left( {SAB} \right)\)
Chứng minh \(DA \bot \left( {SAB} \right)\) từ đó suy ra \(SA\) là hình chiếu vuông góc của \(SD\) trên \(\left( {SAB} \right)\) suy ra góc cần tìm là góc giữa 2 đường thẳng \(SD\) và \(SA\)
Sử dụng tỉ số lượng giác trong tam giác vuông
Lời giải chi tiết:

Ta có \(S\) là giao điểm của \(SD\) và \(\left( {SAB} \right)\) \(\left( 1 \right)\)
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AD\).
Vì \(ABCD\) là hình vuông lên \(AD \bot AB\)
Ta có \(\left\{ \begin{array}{l}AD \bot SA\\AD \bot AB\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow \)\(A\) là hình chiếu vuông góc của \(D\) trên \(\left( {SAB} \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(SA\) là hình chiếu vuông góc của \(SD\) trên \(\left( {SAB} \right)\)
Vậy góc giữa \(SD\) và \(\left( {SAB} \right)\) là góc giữa \(SA\) và \(SD\) là góc giữa \(\widehat {DSA}\)
Xét \(\Delta SAD\) vuông tại \(A\) có \(\tan S = \frac{{AD}}{{SA}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {ASD} = {30^o}\)
Mục 4 trang 62 SGK Toán 11 tập 2 thường xoay quanh các chủ đề về đạo hàm của hàm số, bao gồm các dạng bài tập tính đạo hàm, ứng dụng đạo hàm để khảo sát hàm số, và giải các bài toán liên quan đến đạo hàm. Để giải quyết hiệu quả các bài tập này, học sinh cần nắm vững các kiến thức cơ bản về định nghĩa đạo hàm, các quy tắc tính đạo hàm, và các ứng dụng của đạo hàm.
Để giúp các em học sinh hiểu rõ hơn về nội dung và phương pháp giải các bài tập trong mục 4 trang 62 SGK Toán 11 tập 2, chúng ta sẽ đi vào phân tích từng bài tập cụ thể:
Bài tập này yêu cầu học sinh vận dụng các quy tắc tính đạo hàm cơ bản để tìm đạo hàm của các hàm số đơn giản. Ví dụ:
Bài tập này yêu cầu học sinh sử dụng đạo hàm để xác định các khoảng đơn điệu, cực trị, và điểm uốn của hàm số. Các bước thực hiện như sau:
Bài tập này có thể bao gồm các bài toán về tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc các bài toán ứng dụng đạo hàm trong thực tế. Để giải quyết các bài toán này, học sinh cần kết hợp kiến thức về đạo hàm với các kiến thức khác trong chương trình Toán 11.
Để đạt được kết quả tốt nhất khi giải bài tập mục 4 trang 62 SGK Toán 11 tập 2, học sinh cần lưu ý những điều sau:
Hy vọng rằng với những hướng dẫn chi tiết và phương pháp giải bài tập hiệu quả trên đây, các em học sinh sẽ tự tin hơn trong quá trình học tập môn Toán 11. Chúc các em học tốt và đạt kết quả cao!
| Bài tập | Nội dung chính | Phương pháp giải |
|---|---|---|
| Bài 1 | Tính đạo hàm | Áp dụng quy tắc tính đạo hàm |
| Bài 2 | Khảo sát hàm số | Sử dụng đạo hàm cấp 1 và cấp 2 |
| Bài 3 | Ứng dụng đạo hàm | Kết hợp kiến thức về đạo hàm và các kiến thức khác |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập