Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 73, 74 sách giáo khoa Toán 11 tập 2. Tại tusach.vn, chúng tôi luôn cố gắng cung cấp những bài giải chính xác, dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.
Mục 1 này tập trung vào việc... (nội dung cụ thể của mục 1). Hãy cùng nhau khám phá và chinh phục những bài toán thú vị này nhé!
Cho đường thẳng a và một điểm O không thuộc a. H là hình chiếu của O trên đường thẳng a và M là một điểm bất kì thuộc a (Hình 8.49).
Cho đường thẳng a và một điểm O không thuộc a. H là hình chiếu của O trên đường thẳng a và M là một điểm bất kì thuộc a (Hình 8.49). Trong hai điểm H và M điểm nào có khoảng cách đến O ngắn hơn? Vì sao?

Phương pháp giải:
Quan hệ giữa đường xiên và hình chiếu.
Lời giải chi tiết:
Trong điểm H và M thì điểm H gần O hơn.
Vì tam giác OHM vuông tại H nên ta có OH < OM (quan hệ giữa đường xiên và hình chiếu)
Cho hình lăng trụ tam giác đều ABC.A’B’C’, cạnh đáy bằng a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC. Tính khoảng cách từ G đến đường thẳng A’C’.
Phương pháp giải:
Cho O không thuộc a. H là hình chiếu của O trên a. Độ dài OH là khoảng cách từ O đến a.
Lời giải chi tiết:

Gọi G’ là trọng tâm tam giác A’B’C’, M là trung điểm AC, M’ là trung điểm của A’C’
Ta có: GG’ vuông góc với (A’B’C’) nên GG’ vuông góc với A’C’
G’M’ là trung tuyến của A’B’C’ nên G’M’ vuông góc với A’C’ (Vì tam giác A’B’C’ đều)
Suy ra (GG’M’) vuông góc với A’C’
\( \Rightarrow \)GM’ vuông góc với A’C’
Vậy GM’ là khoảng cách từ G đến A’C’
Tam giác A’B’C’ đều cạnh a nên B’M’ = \(B'M' = \frac{{\sqrt 3 }}{2}a\)
Suy ra G’M’ = \(G'M' = \frac{{\sqrt 3 }}{6}a\)
Xét tam giác vuông GM’G’ tại M’ có:
\(GM' = \sqrt {GG{'^2} + G'M{'^2}} = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {\frac{{\sqrt 3 }}{6}a} \right)}^2}} = \frac{{7\sqrt 3 }}{6}a\)
Cho mặt phẳng \(\left( \alpha \right)\) và O là một điểm không thuộc \(\left( \alpha \right)\). H là hình chiếu của O trên \(\left( \alpha \right)\). Lấy tuy ý điểm M thuộc \(\left( \alpha \right)\). Trong các diểm H và M, điểm nào có khoảng cách đến O ngắn hơn? Vì sao?

Phương pháp giải:
Quan hệ đường xiên và hình chiếu.
Lời giải chi tiết:
Tam giác OHM vuông tại H nên OH < OM (Quan hệ đường xiên và hình chiếu).
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA = 2a; tam giác ABC đều bằng a. Tính khoảng cách từ A đến mặt phẳng (SBC).
Phương pháp giải:
Tìm khoảng cách từ M đến (P):
+ Tìm (Q) chứa M và vuông góc với (P) theo giao tuyến d.
+ Từ M hạ MH vuông góc với d (H thuộc d).
+ Khi đó MH chính là khoảng cách cần tìm.
Lời giải chi tiết:

Gọi H là trung điểm của BC
Tam giác ABC đều nên AH vuông góc với BC
Suy ra \(d\left( {A,\left( {SBC} \right)} \right) = AH\)
\(AH = \sqrt {A{C^2} - C{H^2}} = \sqrt {{{\left( {2a} \right)}^2} - {a^2}} = \sqrt 3 a\)
Mục 1 trang 73, 74 SGK Toán 11 tập 2 thuộc chương trình học về đạo hàm, một trong những khái niệm quan trọng nhất của Toán học. Nắm vững kiến thức về đạo hàm là nền tảng để giải quyết nhiều bài toán phức tạp hơn trong các chương trình học tiếp theo.
Mục 1 tập trung vào việc:
Các bài tập trong mục 1 được thiết kế để giúp học sinh:
Dưới đây là hướng dẫn giải chi tiết các bài tập trong mục 1 trang 73, 74 SGK Toán 11 tập 2:
Lời giải:
Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lũy thừa, ta có:
f'(x) = 2x + 2
Lời giải:
Đạo hàm của hàm số mũ ex là chính nó:
g'(x) = ex
Lời giải:
Đạo hàm của hàm số logarit ln(x) là:
h'(x) = 1/x
Để giải nhanh các bài tập về đạo hàm, bạn có thể áp dụng các mẹo sau:
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết này, các em sẽ tự tin hơn trong việc giải các bài tập về đạo hàm. Chúc các em học tập tốt!
| Hàm số | Đạo hàm |
|---|---|
| f(x) = xn | f'(x) = nxn-1 |
| f(x) = ex | f'(x) = ex |
| f(x) = ln(x) | f'(x) = 1/x |
| Bảng đạo hàm cơ bản | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập