Chào mừng bạn đến với lời giải chi tiết bài tập mục 2 trang 54 SGK Toán 11 tập 2 trên tusach.vn. Bài viết này sẽ cung cấp cho bạn đáp án chính xác, phương pháp giải rõ ràng và những lưu ý quan trọng để bạn có thể tự tin giải quyết các bài toán tương tự.
Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, tusach.vn luôn cố gắng mang đến những tài liệu học tập chất lượng, dễ hiểu và phù hợp với mọi đối tượng học sinh.
Ta biết hình hộp chữ nhật có 6 mặt là các hình chữ nhật. Quan sát một bể nuôi cá cảnh hình hộp chữ nhật (Hình 8.3).
Ta biết hình hộp chữ nhật có 6 mặt là các hình chữ nhật. Quan sát một bể nuôi cá cảnh hình hộp chữ nhật (Hình 8.3). Xem mỗi cạnh của bể nuôi cá là hình ảnh thể hiện một đường thẳng. Hãy chỉ ra những đường thẳng tạo với \(AA'\) một góc \({90^o}\). Trong mỗi trường hợp, hãy cho biết vị trí tương đối của \(AA'\) và đường thẳng đã chỉ ra.

Phương pháp giải:
Để xác định góc giữa hai đường thẳng \(a,b\) ta có thể lấy điểm \(O\) thuộc đường thẳng \(a\) kẻ đường thẳng \(b'\) song song với \(b\). Khi đó \(\left( {a,b} \right) = \left( {a,b'} \right)\)
Dựa vào hình chữ nhật để tìm ra các góc vuông liên quan đến cạnh \(AA'\)
Lời giải chi tiết:
+) Ta có \(AA' \bot AB,AA' \bot AD,AA' \bot A'B',AA' \bot A'D'\) và \(AA'\) cắt các đường thẳng \(AB,AD,A'B',A'D'\)
+) Ta có \(AA' \bot CD,C'D',BC,B'C'\) và \(AA'\) chéo nhau với \(CD,C'D',BC,B'C'\)
Cho tứ diện \(ABCD\) và điểm \(M\) thuộc cạnh \(AD\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\), song song với \(AB\) và \(CD\). Mặt phẳng \(\left( \alpha \right)\) cắt các cạnh \(BD,CB,AC\) lần lượt tại \(N,P,Q\) (Hình 8.5). Biết \(MNPQ\) là một hình chữ nhật. Chứng minh rằng \(AB \bot CD\).

Phương pháp giải:
Để xác định góc giữa hai đường thẳng \(a,b\) ta có thể lấy điểm \(O\) thuộc đường thẳng \(a\) kẻ đường thẳng \(b'\) song song với \(b\). Khi đó \(\left( {a,b} \right) = \left( {a,b'} \right)\)
Định nghĩa: Góc giữa hai đường thẳng \(a,b\) là góc giữa hai đường thẳng \(a',b'\) cùng đi qua một điểm và lần lượt song song hoặc trùng với \(a,b\).
Chứng minh \(AB//PQ,CD//MQ\). Suy ra \(\left( {AB,CD} \right) = \left( {PQ,MQ} \right)\)
Lời giải chi tiết:
Ta có \(\left\{ \begin{array}{l}AB//\left( \alpha \right)\\\left( \alpha \right) \cap \left( {ABC} \right) = PQ\end{array} \right. \Rightarrow AB//PQ\)
Tương tự \(CD//MQ\)
Suy ra \(\left( {AB,CD} \right) = \left( {PQ,MQ} \right)\). Mà \(MNPQ\) là một hình chữ nhật nên \(\widehat {MQP} = {90^o}\)
Vậy \(\left( {AB,CD} \right) = {90^o} \Rightarrow AB \bot CD\)
Mục 2 trang 54 SGK Toán 11 tập 2 thường xoay quanh các chủ đề về đạo hàm của hàm số, bao gồm các quy tắc tính đạo hàm, đạo hàm của các hàm số cơ bản và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 11.
Các bài tập trong mục này thường yêu cầu học sinh:
Dưới đây là lời giải chi tiết cho một số bài tập tiêu biểu trong mục 2 trang 54 SGK Toán 11 tập 2:
Giải:
f'(x) = 3x2 + 4x - 5
Giải:
y' = 3x2 - 6x
Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
Lập bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả và đạt kết quả cao!
| Chủ đề | Nội dung chính |
|---|---|
| Đạo hàm | Định nghĩa, ý nghĩa, quy tắc tính đạo hàm |
| Cực trị | Tìm cực đại, cực tiểu của hàm số |
| Tính đơn điệu | Xác định khoảng tăng, giảm của hàm số |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập