Bài 3.14 thuộc chương trình Toán 11 tập 1, tập trung vào việc vận dụng kiến thức về phép biến hình để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh hiểu rõ các phép biến hình cơ bản như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập Toán 11 hiệu quả.
Tìm các giới hạn sau:
Đề bài
Tìm các giới hạn sau:
a) \(\lim \frac{{6n + 3}}{{4n - 1}}\)
b) \(\lim \frac{{\left( {{n^2} + 1} \right)\left( {2{n^3} - 2n + 1} \right)}}{{\left( {n - 1} \right){{\left( {{n^2} + 1} \right)}^2}}}\)
c) \(\lim \frac{{\sqrt {8{n^2} + 9} }}{{2n - 1}}\)
d) \(\lim \frac{{{2^n} + {4^n}}}{{{6^n} + 1}}\)
Phương pháp giải - Xem chi tiết
Chia cả tử và mẫu cho lũy thừa với số mũ lớn nhất
Sử dụng các công thức sau \(\lim \frac{1}{n} = 0;\,\lim \frac{1}{{{n^k}}} = 0\) với \(k\) là số nguyên dương; \(\lim {q^n} = 0\) nếu \(\left| q \right| < 1\)
Lời giải chi tiết
a) \(\lim \frac{{6n + 3}}{{4n - 1}} = \lim \frac{{6 + \frac{3}{n}}}{{4 - \frac{1}{n}}} = \frac{6}{4} = \frac{3}{2}\)
b) Nhận thấy tử và mẫu số lũy thừa cao nhất là \({n^5}\) nên ta chia cả tử và mẫu cho \({n^5}\) ta được
\({u_n} = \frac{{\left( {{n^2} + 1} \right)\left( {2{n^3} - 2n + 1} \right)}}{{\left( {n - 1} \right){{\left( {{n^2} + 1} \right)}^2}}} = \frac{{\left( {\frac{{{n^2} + 1}}{{{n^2}}}} \right)\left( {\frac{{2{n^3} - 2n + 1}}{{{n^3}}}} \right)}}{{\left( {\frac{{n - 1}}{n}} \right){{\left( {\frac{{{n^2} + 1}}{{{n^2}}}} \right)}^2}}} = \frac{{\left( {1 + \frac{1}{{{n^2}}}} \right)\left( {2 - \frac{1}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{\left( {1 - \frac{1}{n}} \right){{\left( {1 + \frac{1}{{{n^2}}}} \right)}^2}}}\)
Khi đó \(\lim {u_n} = \frac{{1.2}}{{{{1.1}^2}}} = 2\)
c) Chia cả tử và mẫu cho \(n\) ta được
\(\lim \frac{{\sqrt {8{n^2} + 9} }}{{2n - 1}} = \lim \frac{{\frac{{\sqrt {8{n^2} + 9} }}{n}}}{{\frac{{2n - 1}}{n}}} = \lim \frac{{\sqrt {8 + \frac{9}{{{n^2}}}} }}{{2 - \frac{1}{n}}} = \frac{{\sqrt 8 }}{2} = \sqrt 2 \)
d) Vì \({6^n} > 0,\forall n \in \mathbb{N}\) nên ta chia cả tử và mẫu cho \({6^n}\) ta được
\(\lim \frac{{{2^n} + {4^n}}}{{{6^n} + 1}} = \lim \frac{{{{\left( {\frac{2}{6}} \right)}^n} + {{\left( {\frac{4}{6}} \right)}^n}}}{{1 + {{\left( {\frac{1}{6}} \right)}^n}}} = \frac{0}{1} = 0\)
Bài 3.14 trang 80 SGK Toán 11 tập 1 yêu cầu học sinh vận dụng kiến thức về phép biến hình để chứng minh tính chất của các hình. Để giải bài tập này, chúng ta cần nắm vững định nghĩa, tính chất và các công thức liên quan đến các phép biến hình.
Bài tập thường yêu cầu chứng minh một hình nào đó là ảnh của một hình khác qua một phép biến hình cho trước. Ví dụ, chứng minh tam giác ABC là ảnh của tam giác A'B'C' qua phép tịnh tiến theo vectơ v.
Bài toán: Cho tam giác ABC với A(1;2), B(3;4), C(5;1). Tìm ảnh của tam giác ABC qua phép tịnh tiến theo vectơ v = (2; -1).
Giải:
Vậy, ảnh của tam giác ABC qua phép tịnh tiến theo vectơ v = (2; -1) là tam giác A'B'C' với A'(3; 1), B'(5; 3), C'(7; 0).
Ngoài SGK Toán 11 tập 1, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán:
Bài 3.14 trang 80 SGK Toán 11 tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về phép biến hình. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các bạn học sinh có thể tự tin giải bài tập và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập