Bài viết này cung cấp đầy đủ và chi tiết lý thuyết về góc giữa đường thẳng và mặt phẳng, góc nhị diện trong chương trình Toán 11 Chân trời sáng tạo. Chúng tôi sẽ trình bày các định nghĩa, tính chất, công thức và phương pháp giải bài tập liên quan.
Nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán hình học không gian phức tạp hơn.
1. Góc giữa đường thẳng và mặt phẳng Nếu đường thẳng a vuông góc với mặt phẳng (P) thì ta nói rằng góc giữa đường thẳng a và mặt phẳng (P) bằng \({90^0}\).
1. Góc giữa đường thẳng và mặt phẳng
Nếu đường thẳng a vuông góc với mặt phẳng (P) thì ta nói rằng góc giữa đường thẳng a và mặt phẳng (P) bằng \({90^0}\).
Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa a và hình chiếu a’ của nó trên (P) được gọi là góc giữa đường thẳng a và mặt phẳng (P).

Chú ý:
a) Góc \(\alpha \) giữa đường thẳng và mặt phẳng luôn thỏa mãn \({0^0} \le \alpha \le {90^0}\).
b) Nếu đường thẳng a nằm trong (P) hoặc a song song với (P) thì \(\left( {a,\left( P \right)} \right) = {0^0}\).
2. Góc nhị diện và góc phẳng nhị diện
Góc nhị diện
Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hình tạo bởi \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) và d được gọi là góc nhị diện tạo bởi \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\), kí hiệu \(\left[ {{P_1},d,{Q_1}} \right]\).
Hai nửa mặt phẳng \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) gọi là hai mặt của nhị diện và d gọi là cạnh của nhị diện.

Chú ý:
a) Hai mặt phẳng cắt nhau theo giao tuyến d tạo thành bốn góc nhị diện.
b) Góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\) còn được kí hiệu là \(\left[ {M,d,N} \right]\) với M, N tương ứng thuộc hai nửa mặt phẳng \(\left( {{P_1}} \right),\left( {{Q_1}} \right)\).
Góc phẳng nhị diện
Góc phẳng nhị diện của góc nhị diện là góc có đỉnh nằm trên cạnh của nhị diện, có hai cạnh lần lượt nằm trên hai mặt của nhị diện và vuông góc với cạnh của nhị diện.
Chú ý:
a) Đối với một góc nhị diện, các góc phẳng nhị diện đều bằng nhau.
b) Nếu mặt phẳng (R) vuông góc với cạnh d của góc nhị diện và cắt hai mặt \(\left( {{P_1}} \right),\left( {{Q_1}} \right)\) của góc nhị diện theo hai nửa đường thẳng Ou và Ov thì \(\widehat {uOv}\) là góc phẳng nhị diện của góc nhị diện tạo bởi \(\left( {{P_1}} \right),\left( {{Q_1}} \right)\).
c) Góc nhị diện có góc phẳng nhị diện là góc vuông được gọi là góc nhị diện vuông.
d) Số đo góc phẳng nhị diện được gọi là số đo góc nhị diện.
e) Số đo góc nhị diện nhận giá trị từ \({0^0}\) đến \({180^0}\).

Chào mừng các em học sinh đến với bài học về góc giữa đường thẳng và mặt phẳng, góc nhị diện trong chương trình Toán 11 Chân trời sáng tạo. Đây là một phần kiến thức quan trọng trong chương trình Hình học không gian, giúp các em hiểu rõ hơn về mối quan hệ giữa các đối tượng hình học trong không gian ba chiều.
1. Định nghĩa: Góc giữa đường thẳng d và mặt phẳng (P) là góc giữa đường thẳng d và hình chiếu của d trên mặt phẳng (P). Góc này luôn nhỏ hơn hoặc bằng 90°.
2. Cách tính góc:
1. Định nghĩa: Góc nhị diện là hình tạo bởi hai nửa mặt phẳng có chung một đường thẳng. Đường thẳng chung đó gọi là cạnh của góc nhị diện, còn hai nửa mặt phẳng gọi là hai mặt của góc nhị diện.
2. Cách đo góc nhị diện: Góc nhị diện được đo bằng góc giữa hai đường thẳng vuông góc với cạnh của góc nhị diện, nằm trong hai nửa mặt phẳng khác nhau.
3. Ví dụ: Góc nhị diện tạo bởi hai mặt phẳng (P) và (Q) có cạnh chung là đường thẳng a. Ta chọn hai điểm A và B lần lượt nằm trên (P) và (Q) sao cho AB vuông góc với a. Góc nhị diện (P, Q) bằng góc BAB'.
Bài 1: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Tính góc giữa đường thẳng SA và mặt phẳng (ABCD).
Giải: Vì SA vuông góc với đáy ABCD nên SA vuông góc với mọi đường thẳng nằm trong mặt phẳng (ABCD). Do đó, góc giữa SA và (ABCD) bằng 90°.
Bài 2: Cho hai mặt phẳng (P) và (Q) cắt nhau tại đường thẳng a. Trên (P) có điểm A, trên (Q) có điểm B sao cho AB = 5cm và AB tạo với (P) một góc 60°. Tính góc nhị diện giữa hai mặt phẳng (P) và (Q).
Giải: (Bài giải chi tiết cần vẽ hình và áp dụng các công thức tính góc nhị diện).
Hy vọng bài viết này đã cung cấp cho các em những kiến thức cơ bản và hữu ích về lý thuyết góc giữa đường thẳng và mặt phẳng, góc nhị diện trong chương trình Toán 11 Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong các kỳ thi!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập