1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 93 SGK Toán 11 Tập 2 – Chân trời sáng tạo

Bài 2 trang 93 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm của hàm số.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp

Đề bài

Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi \(A\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 2”, \(B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”.

a) Hãy mô tả bằng lời biến cố \(AB\).

b) Hai biến cố \(A\) và \(B\) có độc lập không? Tại sao?

Phương pháp giải - Xem chi tiếtBài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

Sử dụng tính chất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

Lời giải chi tiết

a) \(AB\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 6”.

b) Lấy ngẫu nhiên 1 thẻ tử hộp có 21 cách \( \Rightarrow n\left( \Omega \right) = 21\)

\(\begin{array}{l}n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{10}}{{21}}\\n\left( B \right) = 7 \Rightarrow P\left( B \right) = \frac{7}{{21}} = \frac{1}{3}\\n\left( {AB} \right) = 3 \Rightarrow P\left( {AB} \right) = \frac{3}{{21}} = \frac{1}{7}\end{array}\)

Vì \(P\left( {AB} \right) \ne P\left( A \right)P\left( B \right)\) nên hai biến cố \(A\) và \(B\) không độc lập.

Bài 2 trang 93 SGK Toán 11 Tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 2 trang 93 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 2 yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (2x + 1) / (x - 3)
  • d) y = sin(2x) + cos(x)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (2x + 1) / (x - 3)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(2)(x - 3) - (2x + 1)(1)] / (x - 3)2 = (2x - 6 - 2x - 1) / (x - 3)2 = -7 / (x - 3)2

d) y = sin(2x) + cos(x)

Áp dụng công thức đạo hàm của hàm lượng giác, ta có:

y' = 2cos(2x) - sin(x)

Lưu ý quan trọng

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng công thức đạo hàm của tổng, hiệu, tích, thương.
  • Chú ý đến việc sử dụng quy tắc chuỗi khi tính đạo hàm của hàm hợp.
  • Kiểm tra lại kết quả sau khi tính toán.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập sau:

  1. Tính đạo hàm của hàm số y = x4 - 5x2 + 3x + 1
  2. Tính đạo hàm của hàm số y = (x + 2)(x2 - 1)
  3. Tính đạo hàm của hàm số y = (x - 1) / (x + 1)
  4. Tính đạo hàm của hàm số y = tan(x) + cot(x)

Kết luận

Bài 2 trang 93 SGK Toán 11 Tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Việc nắm vững các công thức đạo hàm và áp dụng đúng các quy tắc sẽ giúp học sinh giải quyết bài tập một cách nhanh chóng và chính xác. tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ tự tin hơn trong việc học tập môn Toán.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN