1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 3 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 3 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 3 thuộc chương trình học Toán 11 Tập 1, sách Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến phép biến hóa lượng giác. Bài tập này giúp học sinh củng cố kiến thức về công thức lượng giác và áp dụng vào giải quyết các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Xét tính liên tục của các hàm số sau:

Đề bài

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\);

b) \(g\left( x \right) = \sqrt {9 - {x^2}} \);

c) \(h\left( x \right) = \cos x + \tan x\).

Phương pháp giải - Xem chi tiếtBài 3 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Để tính xét tính liên tục của hàm số, ta tìm những khoảng xác định của hàm số đó.

Lời giải chi tiết

a) ĐKXĐ: \({x^2} - 4 \ne 0 \Leftrightarrow x \ne \pm 2\)

Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\).

Hàm số \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng \(\left( { - \infty ; - 2} \right),\left( { - 2;2} \right)\) và \(\left( {2; + \infty } \right)\).

b) ĐKXĐ: \(9 - {x^2} \ge 0 \Leftrightarrow - 3 \le x \le 3\)

Vậy hàm số có TXĐ: \(D = \left[ { - 3;3} \right]\).

Hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là hàm căn thức nên nó liên tục trên khoảng \(\left( { - 3;3} \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}} = \sqrt {9 - {3^2}} = 0 = f\left( 3 \right)\)

\(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ + }} \sqrt {9 - {x^2}} = \sqrt {9 - {{\left( { - 3} \right)}^2}} = 0 = f\left( { - 3} \right)\)

Vậy hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là liên tục trên đoạn \(\left[ { - 3;3} \right]\).

c) ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Hàm số \(h\left( x \right) = \cos x + \tan x\) là hàm lượng giác nên nó liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right),k \in \mathbb{Z}\).

Bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh rèn luyện kỹ năng giải toán liên quan đến phép biến hóa lượng giác. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 3 yêu cầu học sinh thực hiện các phép biến đổi lượng giác để rút gọn biểu thức hoặc chứng minh đẳng thức. Các dạng bài tập thường gặp bao gồm:

  • Rút gọn biểu thức lượng giác sử dụng các công thức cộng, trừ, nhân, chia góc.
  • Chứng minh đẳng thức lượng giác bằng cách biến đổi một vế về vế còn lại.
  • Giải phương trình lượng giác cơ bản.

Lời giải chi tiết

Để giải bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo, các em cần nắm vững các công thức lượng giác cơ bản sau:

  • sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
  • cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
  • tan(a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))
  • sin2(x) + cos2(x) = 1

Ví dụ: Giả sử bài tập yêu cầu rút gọn biểu thức A = sin(x + π/3). Ta có thể sử dụng công thức cộng góc để rút gọn biểu thức như sau:

A = sin(x + π/3) = sin(x)cos(π/3) + cos(x)sin(π/3) = sin(x) * (1/2) + cos(x) * (√3/2)

Hướng dẫn giải bài tập tương tự

Khi gặp các bài tập tương tự, các em có thể áp dụng các bước sau:

  1. Xác định công thức lượng giác phù hợp để sử dụng.
  2. Biến đổi biểu thức hoặc chứng minh đẳng thức theo các bước logic.
  3. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Mẹo giải nhanh

Để giải nhanh các bài tập lượng giác, các em có thể sử dụng các mẹo sau:

  • Nắm vững các giá trị lượng giác của các góc đặc biệt (0, π/6, π/4, π/3, π/2).
  • Sử dụng các công thức biến đổi lượng giác một cách linh hoạt.
  • Tập trung vào việc biến đổi một vế về vế còn lại khi chứng minh đẳng thức.

Bài tập luyện tập

Để củng cố kiến thức, các em có thể làm thêm các bài tập luyện tập sau:

Bài tậpĐáp án
Rút gọn biểu thức B = cos(x - π/4)B = (√2/2)(cos(x) + sin(x))
Chứng minh đẳng thức: sin2(x) + cos2(x) = 1Chứng minh bằng cách sử dụng định lý Pythagoras.

Kết luận: Bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán lượng giác. Bằng cách nắm vững các công thức và áp dụng các phương pháp giải phù hợp, các em có thể tự tin giải quyết các bài tập tương tự.

Chúc các em học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN