Bài 3 thuộc chương trình học Toán 11 Tập 1, sách Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến phép biến hóa lượng giác. Bài tập này giúp học sinh củng cố kiến thức về công thức lượng giác và áp dụng vào giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Xét tính liên tục của các hàm số sau:
Đề bài
Xét tính liên tục của các hàm số sau:
a) \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\);
b) \(g\left( x \right) = \sqrt {9 - {x^2}} \);
c) \(h\left( x \right) = \cos x + \tan x\).
Phương pháp giải - Xem chi tiết
Để tính xét tính liên tục của hàm số, ta tìm những khoảng xác định của hàm số đó.
Lời giải chi tiết
a) ĐKXĐ: \({x^2} - 4 \ne 0 \Leftrightarrow x \ne \pm 2\)
Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\).
Hàm số \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng \(\left( { - \infty ; - 2} \right),\left( { - 2;2} \right)\) và \(\left( {2; + \infty } \right)\).
b) ĐKXĐ: \(9 - {x^2} \ge 0 \Leftrightarrow - 3 \le x \le 3\)
Vậy hàm số có TXĐ: \(D = \left[ { - 3;3} \right]\).
Hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là hàm căn thức nên nó liên tục trên khoảng \(\left( { - 3;3} \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}} = \sqrt {9 - {3^2}} = 0 = f\left( 3 \right)\)
\(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ + }} \sqrt {9 - {x^2}} = \sqrt {9 - {{\left( { - 3} \right)}^2}} = 0 = f\left( { - 3} \right)\)
Vậy hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là liên tục trên đoạn \(\left[ { - 3;3} \right]\).
c) ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)
Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
Hàm số \(h\left( x \right) = \cos x + \tan x\) là hàm lượng giác nên nó liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right),k \in \mathbb{Z}\).
Bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh rèn luyện kỹ năng giải toán liên quan đến phép biến hóa lượng giác. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 3 yêu cầu học sinh thực hiện các phép biến đổi lượng giác để rút gọn biểu thức hoặc chứng minh đẳng thức. Các dạng bài tập thường gặp bao gồm:
Để giải bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo, các em cần nắm vững các công thức lượng giác cơ bản sau:
Ví dụ: Giả sử bài tập yêu cầu rút gọn biểu thức A = sin(x + π/3). Ta có thể sử dụng công thức cộng góc để rút gọn biểu thức như sau:
A = sin(x + π/3) = sin(x)cos(π/3) + cos(x)sin(π/3) = sin(x) * (1/2) + cos(x) * (√3/2)
Khi gặp các bài tập tương tự, các em có thể áp dụng các bước sau:
Để giải nhanh các bài tập lượng giác, các em có thể sử dụng các mẹo sau:
Để củng cố kiến thức, các em có thể làm thêm các bài tập luyện tập sau:
| Bài tập | Đáp án |
|---|---|
| Rút gọn biểu thức B = cos(x - π/4) | B = (√2/2)(cos(x) + sin(x)) |
| Chứng minh đẳng thức: sin2(x) + cos2(x) = 1 | Chứng minh bằng cách sử dụng định lý Pythagoras. |
Kết luận: Bài 3 trang 85 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán lượng giác. Bằng cách nắm vững các công thức và áp dụng các phương pháp giải phù hợp, các em có thể tự tin giải quyết các bài tập tương tự.
Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập