1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 5 thuộc chương trình Toán 11 Tập 1, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Cho hình chóp (S.ABCD) có đáy là hình bình hành, (AC) và (BD) cắt nhau tại (O). Gọi (I) là trung điểm của (SO). Mặt phẳng (left( {ICD} right)) cắt (SA,SB) lần lượt tại (M,N).

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \(\left( {ICD} \right)\) cắt \(SA,SB\) lần lượt tại \(M,N\).

a) Hãy nói cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a\).

b) Trong mặt phẳng \(\left( {CDMN} \right)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \(SK\parallel BC\parallel AD\).

Phương pháp giải - Xem chi tiếtBài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

a) – Để xác định hai điểm \(M\) và \(N\), ta sử dụng tính chất về giao tuyến của hai mặt phẳng và định lí 2 về giao tuyến của ba mặt phẳng.

– Để tính độ dài đoạn thẳng \(MN\), ta sử dụng định lí Medelaus và định lí Thales.

b) Áp dụng định lí 2 về giao tuyến của ba mặt phẳng.

Lời giải chi tiết

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

a) • Ta có:

\(\begin{array}{l}\left. \begin{array}{l}M \in \left( {IC{\rm{D}}} \right)\\M \in SA \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow M \in \left( {IC{\rm{D}}} \right) \cap \left( {SAC} \right)\\\left. \begin{array}{l}I \in \left( {IC{\rm{D}}} \right)\\I \in SO \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow I \in \left( {IC{\rm{D}}} \right) \cap \left( {SAC} \right)\\C \in \left( {IC{\rm{D}}} \right) \cap \left( {SAC} \right)\end{array}\)

\( \Rightarrow M,I,C\) thẳng hàng.

Do đó \(M\) là giao điểm của \(IC\) và \(SA\).

• Ta có:

\(\begin{array}{l}\left. \begin{array}{l}N \in \left( {IC{\rm{D}}} \right)\\N \in SB \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow N \in \left( {IC{\rm{D}}} \right) \cap \left( {SB{\rm{D}}} \right)\\\left. \begin{array}{l}I \in \left( {IC{\rm{D}}} \right)\\I \in SO \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow I \in \left( {IC{\rm{D}}} \right) \cap \left( {SB{\rm{D}}} \right)\\D \in \left( {IC{\rm{D}}} \right) \cap \left( {SB{\rm{D}}} \right)\end{array}\)

\( \Rightarrow N,I,D\) thẳng hàng.

Do đó \(N\) là giao điểm của \(I{\rm{D}}\) và \(SB\).

• Ta có:

\(\begin{array}{l}AB = \left( {SAB} \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {IC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN = \left( {SAB} \right) \cap \left( {IC{\rm{D}}} \right)\\AB\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(AB\parallel C{\rm{D}}\parallel MN\).

Áp dụng định lí Medelaus cho tam giác \(SOA\) với cát tuyến \(CIM\), ta có:

\(\frac{{SM}}{{MA}}.\frac{{AC}}{{OC}}.\frac{{OI}}{{SI}} = 1 \Leftrightarrow \frac{{SM}}{{MA}}.2.1 = 1 \Leftrightarrow \frac{{SM}}{{MA}} = \frac{1}{2}\)

Xét tam giác \(SAB\) có \(MN\parallel AB\). Theo định lí Thales ta có:

\(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{1}{3} \Leftrightarrow MN = \frac{1}{3}AB = \frac{a}{3}\)

b) Ta có:

\(\begin{array}{l}BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\SK = \left( {SAD} \right) \cap \left( {SBC} \right)\\AD\parallel BC\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(SK\parallel BC\parallel A{\rm{D}}\).

Bài 5 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài tập yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Xác định tập xác định của hàm số.
  • Tính đạo hàm của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Vẽ đồ thị của hàm số.

Giải chi tiết

Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa hàm số và tập xác định.
  • Các quy tắc tính đạo hàm.
  • Điều kiện cần và đủ để hàm số có cực trị.
  • Cách khảo sát sự biến thiên của hàm số.
  • Cách vẽ đồ thị của hàm số.

Ví dụ, xét hàm số y = x3 - 3x2 + 2. Ta có:

  • Tập xác định: D = ℝ
  • Đạo hàm: y' = 3x2 - 6x
  • Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  • Khảo sát dấu của y':
    • Khi x < 0, y' > 0, hàm số đồng biến.
    • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Khi x > 2, y' > 0, hàm số đồng biến.
  • Vậy hàm số có cực đại tại x = 0, giá trị cực đại là y = 2 và có cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải nhanh

Để giải bài tập này một cách nhanh chóng và hiệu quả, học sinh có thể áp dụng các mẹo sau:

  • Sử dụng các công thức đạo hàm cơ bản.
  • Chú ý đến các khoảng mà hàm số đồng biến hoặc nghịch biến.
  • Vẽ phác thảo đồ thị của hàm số để kiểm tra kết quả.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về hàm số và ứng dụng của đạo hàm, học sinh có thể làm thêm các bài tập tương tự sau:

  • Bài 1 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo
  • Bài 2 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo
  • Bài 3 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Kết luận

Bài 5 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn trên, học sinh có thể tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.

Lưu ý: Đây chỉ là một ví dụ minh họa. Để có lời giải chi tiết và chính xác nhất, hãy tham khảo SGK Toán 11 Tập 1 - Chân trời sáng tạo và các tài liệu tham khảo khác.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN