Bài 5 trang 56 SGK Toán 11 Tập 1 - Chân trời sáng tạo là bài tập thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán cụ thể.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
Đề bài
Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_3} - {u_1} = 20\\{u_2} + {u_5} = 54\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_2} + {u_3} = 0\\{u_2} + {u_5} = 80\end{array} \right.\);
c) \(\left\{ \begin{array}{l}{u_5} - {u_2} = 3\\{u_8}.{u_3} = 24\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\), sau đó đưa về giải hệ phương trình.
Lời giải chi tiết
a)
\(\begin{array}{l}\left\{ \begin{array}{l}{u_3} - {u_1} = 20\\{u_2} + {u_5} = 54\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{u_1} + 2{\rm{d}}} \right) - {u_1} = 20\\\left( {{u_1} + d} \right) + \left( {{u_1} + 4{\rm{d}}} \right) = 54\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2{\rm{d}} - {u_1} = 20\\{u_1} + d + {u_1} + 4{\rm{d}} = 54\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{\rm{d}} = 20\\2{u_1} + 5{\rm{d}} = 54\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 10\\2{u_1} + 5.10 = 54\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 10\\{u_1} = 2\end{array} \right.\end{array}\)
Vậy cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và công sai \(d = 10\).
b)
\(\begin{array}{l}\left\{ \begin{array}{l}{u_2} + {u_3} = 0\\{u_2} + {u_5} = 80\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {{u_1} + d} \right) + \left( {{u_1} + 2d} \right) = 0\\\left( {{u_1} + d} \right) + \left( {{u_1} + 4d} \right) = 80\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d + {u_1} + 2d = 0\\{u_1} + d + {u_1} + 4d = 80\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 3d = 0\\2{u_1} + 5d = 80\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 60\\d = 40\end{array} \right.\end{array}\)
Vậy cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 60\) và công sai \(d = 40\).
c)
\(\begin{array}{l}\left\{ \begin{array}{l}\left( {{u_1} + 4d} \right) - \left( {{u_1} + d} \right) = 3\\\left( {{u_1} + 7d} \right).\left( {{u_1} + 2d} \right) = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 4d - {u_1} - d = 3\\\left( {{u_1} + 7d} \right).\left( {{u_1} + 2d} \right) = 24\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}3d = 3\\\left( {{u_1} + 7d} \right).\left( {{u_1} + 2d} \right) = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 1\left( 1 \right)\\\left( {{u_1} + 7d} \right).\left( {{u_1} + 2d} \right) = 24\left( 2 \right)\end{array} \right.\end{array}\)
Thế (1) vào (2) ta được:
\(\begin{array}{l}\left( {{u_1} + 7.1} \right).\left( {{u_1} + 2.1} \right) = 24 \Leftrightarrow \left( {{u_1} + 7} \right).\left( {{u_1} + 2} \right) = 24\\ \Leftrightarrow u_1^2 + 7{u_1} + 2{u_1} + 14 = 24 \Leftrightarrow u_1^2 + 9{u_1} - 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{u_1} = 1\\{u_1} = - 10\end{array} \right.\end{array}\)
Vậy có hai cấp số cộng \(\left( {{u_n}} \right)\) thoả mãn:
‒ Cấp số cộng có số hạng đầu \({u_1} = 1\) và công sai \(d = 1\).
‒ Cấp số cộng có số hạng đầu \({u_1} = - 10\) và công sai \(d = 1\).
Bài 5 trang 56 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về giới hạn của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu tính giới hạn của các hàm số tại một điểm cho trước. Để giải bài tập này, học sinh cần nắm vững các định nghĩa và tính chất của giới hạn hàm số, cũng như các phương pháp tính giới hạn thường gặp.
Để giải bài tập này, chúng ta sẽ sử dụng các phương pháp sau:
Ví dụ, xét bài toán sau:
lim (x -> 2) (x^2 - 4) / (x - 2)
Ta có thể phân tích tử số thành nhân tử:
(x^2 - 4) = (x - 2)(x + 2)
Vậy, biểu thức trở thành:
lim (x -> 2) (x - 2)(x + 2) / (x - 2) = lim (x -> 2) (x + 2) = 4
Để giải các bài tập tương tự, học sinh cần:
Khi tính giới hạn, cần chú ý đến các trường hợp sau:
Để củng cố kiến thức, học sinh có thể tự giải các bài tập sau:
Kết luận: Bài 5 trang 56 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn hàm số. Việc nắm vững kiến thức và phương pháp giải bài tập này sẽ giúp học sinh tự tin hơn trong quá trình học tập môn Toán.
Tìm kiếm thêm:
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập