Bài 4 trang 79 SGK Toán 11 Tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các khái niệm về tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán hiệu quả.
Tìm các giới hạn sau:
Đề bài
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x + 1}}\);
b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 - {x^2}} \right)\);
c) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}}\).
Phương pháp giải - Xem chi tiết
Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.
Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.
Lời giải chi tiết
a) Áp dụng giới hạn một bên thường dùng,
Ta có : \(\left\{ \begin{array}{l}1 > 0\\x - \left( { - 1} \right) > 0,x \to - {1^ + }\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{1}{{x - \left( { - 1} \right)}} = + \infty \)
b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 - {x^2}} \right) = \mathop {\lim }\limits_{x \to - \infty } {x^2}\left( {\frac{1}{{{x^2}}} - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } {x^2}.\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{{x^2}}} - 1} \right)\)
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } {x^2} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{1}{{{x^2}}} - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to - \infty } 1 = 0 - 1 = - 1\)
\( \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \left( {1 - {x^2}} \right) = - \infty \)
c) \(\mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{ - x}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}}\)
Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right) = - \mathop {\lim }\limits_{x \to {3^ - }} x = - 3;\mathop {\lim }\limits_{x \to {3^ - }} \frac{1}{{x - 3}} = - \infty \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {3^ - }} \frac{x}{{3 - x}} = + \infty \)
Bài 4 trang 79 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó trong việc tìm giá trị lớn nhất, giá trị nhỏ nhất. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu tìm tập xác định của hàm số và xét tính đơn điệu của hàm số. Cụ thể, hàm số được cho là:
f(x) = -x2 + 4x - 1
Hàm số f(x) = -x2 + 4x - 1 là một hàm đa thức bậc hai, do đó tập xác định của hàm số là tập số thực, tức là D = ℝ.
Để xét tính đơn điệu của hàm số, ta tìm đạo hàm của hàm số:
f'(x) = -2x + 4
Giải phương trình f'(x) = 0, ta được:
-2x + 4 = 0 ⇔ x = 2
Xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đồng biến trên khoảng (-∞; 2) và nghịch biến trên khoảng (2; +∞).
Vì hàm số là hàm bậc hai với hệ số a = -1 < 0, hàm số đạt giá trị lớn nhất tại đỉnh của parabol. Hoành độ đỉnh là x = -b/2a = -4/(2*(-1)) = 2.
Giá trị lớn nhất của hàm số là f(2) = -22 + 4*2 - 1 = 3.
Để rèn luyện thêm kỹ năng giải bài tập về hàm số, các em có thể tham khảo các bài tập tương tự sau:
Bài 4 trang 79 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc hai và ứng dụng của nó. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ giúp các em tự tin hơn trong các kỳ thi và học tập.
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về bài tập này và đạt kết quả tốt trong học tập.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập