Chào mừng bạn đến với lời giải chi tiết Mục 2 trang 54 SGK Toán 11 tập 1, chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Cho cấp số cộng \(\left( {{u_n}} \right)\). Hãy cho biết các hiệu số sau đây gấp bao nhiêu lần công sai \(d\) của \(\left( {{u_n}} \right)\): \({u_2} - {u_1};{u_3} - {u_1};{u_4} - {u_1};...;{u_n} - {u_1}\).
Cho cấp số cộng \(\left( {{u_n}} \right)\). Hãy cho biết các hiệu số sau đây gấp bao nhiêu lần công sai \(d\) của \(\left( {{u_n}} \right)\): \({u_2} - {u_1};{u_3} - {u_1};{u_4} - {u_1};...;{u_n} - {u_1}\).
Phương pháp giải:
Dựa vào công thức \({u_{n + 1}} = {u_n} + d\).
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}{u_2} - {u_1} = d\\{u_3} - {u_1} = \left( {{u_2} + d} \right) - {u_1} = {u_2} + d - {u_1} = \left( {{u_2} - {u_1}} \right) + d = d + d = 2{\rm{d}}\\{u_4} - {u_1} = \left( {{u_3} + d} \right) - {u_1} = {u_3} + d - {u_1} = \left( {{u_3} - {u_1}} \right) + d = 2d + d = 3{\rm{d}}\\ \vdots \\{u_n} - {u_1} = \left( {n - 1} \right)d\end{array}\)
Tìm số hạng tổng quát của các cấp số cộng sau:
a) Cấp số cộng \(\left( {{a_n}} \right)\) có \({a_1} = 5\) và \(d = - 5\);
b) Cấp số cộng \(\left( {{b_n}} \right)\) có \({b_1} = 2\) và \({b_{10}} = 20\).
Phương pháp giải:
Thay vào công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).
Lời giải chi tiết:
a) Số hạng tổng quát của cấp số cộng \(\left( {{a_n}} \right)\) là:
\({a_n} = {a_1} + \left( {n - 1} \right)d = 5 + \left( {n - 1} \right).\left( { - 5} \right) = 5 - 5n + 5 = 10 - 5n\).
b) Giả sử cấp số cộng \(\left( {{b_n}} \right)\) có công sai \(d\). Ta có:
\({b_{10}} = {b_1} + \left( {10 - 1} \right)d \Leftrightarrow 20 = 2 + 9d \Leftrightarrow 9d = 18 \Leftrightarrow d = 2\).
Vậy số hạng tổng quát của cấp số cộng \(\left( {{b_n}} \right)\) là:
\({b_n} = {b_1} + \left( {n - 1} \right)d = 2 + \left( {n - 1} \right).2 = 2 + 2n - 2 = 2n\).
Tìm số hạng tổng quát của cấp số cộng \(\left( {{c_n}} \right)\) có \({c_4} = 80\) và \({c_6} = 40\).
Phương pháp giải:
Biểu diễn các số hạng của cấp số cộng theo \({c_1}\) số hạng đầu và công sai \(d\) rồi giải hệ phương trình.
Lời giải chi tiết:
Giả sử cấp số cộng \(\left( {{c_n}} \right)\) có số hạng đầu \({c_1}\) và công sai \(d\).
Ta có:
\(\begin{array}{l}{c_4} = {c_1} + \left( {4 - 1} \right){\rm{d}} = {c_1} + 3{\rm{d}} \Leftrightarrow {c_1} + 3{\rm{d}} = 80\left( 1 \right)\\{c_6} = {c_1} + \left( {6 - 1} \right){\rm{d}} = {c_1} + 5{\rm{d}} \Leftrightarrow {c_1} + 5{\rm{d}} = 40\left( 2 \right)\end{array}\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}{c_1} + 3{\rm{d}} = 80\\{c_1} + 5{\rm{d}} = 40\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 140\\d = - 20\end{array} \right.\)
Vậy số hạng tổng quát của cấp số cộng \(\left( {{c_n}} \right)\) là:
\({c_n} = {c_1} + \left( {n - 1} \right)d = 140 + \left( {n - 1} \right).\left( { - 20} \right) = 140 - 20n + 20 = 160 - 20n\).
Mục 2 trang 54 SGK Toán 11 tập 1 Chân trời sáng tạo thường xoay quanh các bài toán liên quan đến phép biến hóa affine. Để giải quyết hiệu quả các bài tập này, học sinh cần nắm vững định nghĩa, tính chất của phép biến hóa affine, cũng như cách xác định ma trận của phép biến hóa affine.
Để giúp bạn hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng bài tập trong Mục 2 trang 54:
Cho hai điểm A(1; 2) và B(3; 4). Tìm ma trận của phép biến hóa affine f biến A thành A'(-1; 0) và B thành B'(5; 2).
Lời giải:
Gọi ma trận của phép biến hóa affine f là:
f = [[a, b], [c, d]]
Ta có:
f * A = A' => [[a, b], [c, d]] * [1, 2] = [-1, 0] => a + 2b = -1 và c + 2d = 0 f * B = B' => [[a, b], [c, d]] * [3, 4] = [5, 2] => 3a + 4b = 5 và 3c + 4d = 2
Giải hệ phương trình trên, ta được:
a = 3, b = -2, c = -4, d = 2
Vậy ma trận của phép biến hóa affine f là:
f = [[3, -2], [-4, 2]]
(Giải các bài tập còn lại tương tự như bài 1, áp dụng các kiến thức và phương pháp đã trình bày)
Để củng cố kiến thức, bạn có thể tìm thêm các bài tập tương tự trong các sách bài tập, đề thi hoặc trên các trang web học toán trực tuyến.
Chúc bạn học tốt!
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập