Bài 4 trang 41 SGK Toán 11 Tập 1 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các khái niệm về tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán hiệu quả.
Giải các phương trình lượng giác sau:
Đề bài
Giải các phương trình lượng giác sau:
\(\begin{array}{l}a)\;cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1\\b)\;cot3x = - \frac{{\sqrt 3 }}{3}\end{array}\)
Phương pháp giải - Xem chi tiết
Phương trình \(\cot x = m\)có nghiệm với mọi m.
Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( {0;\pi } \right)\) thoả mãn \(\cot \alpha = m\). Khi đó:
\(\cot {\rm{x}} = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)
Lời giải chi tiết
a, Điều kiện xác định: \(\frac{1}{2}x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)
Ta có: \(cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1 \Leftrightarrow cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = \cot \left( { - \frac{\pi }{4}} \right)\)
\( \Leftrightarrow \frac{1}{2}x + \frac{\pi }{4} = - \frac{\pi }{4} + k\pi \Leftrightarrow x = - \pi + k2\pi ,k \in \mathbb{Z}\,\,(TM).\)
Vậy \(x = - \pi + k2\pi ,k \in \mathbb{Z}\,\).
b, Điều kiện xác định: \(3x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{3},k \in \mathbb{Z}.\)
\(\;cot3x = - \frac{{\sqrt 3 }}{3} \Leftrightarrow cot3x = \cot \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow 3x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\,(TM).\)
Vậy \(x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\).
Bài 4 trang 41 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu xét hàm số f(x) = -x2 + 4x - 3 và thực hiện các yêu cầu sau:
1. Tập xác định:
Hàm số f(x) = -x2 + 4x - 3 là một hàm số bậc hai, do đó tập xác định của hàm số là tập R (tất cả các số thực).
2. Tọa độ đỉnh của parabol:
Tọa độ đỉnh của parabol y = ax2 + bx + c là I(-b/2a, -Δ/4a), trong đó Δ = b2 - 4ac.
Trong trường hợp này, a = -1, b = 4, c = -3. Vậy:
Vậy tọa độ đỉnh của parabol là I(2, 1).
3. Trục đối xứng của parabol:
Trục đối xứng của parabol là đường thẳng x = -b/2a. Trong trường hợp này, trục đối xứng là x = 2.
4. Khoảng đồng biến, nghịch biến:
Vì a = -1 < 0, parabol có hướng mở xuống. Do đó:
5. Vẽ đồ thị của hàm số:
Để vẽ đồ thị của hàm số, ta cần xác định một vài điểm thuộc đồ thị. Ví dụ:
Vẽ parabol đi qua các điểm này và có đỉnh I(2, 1), trục đối xứng x = 2.
Khi giải các bài tập về hàm số bậc hai, cần chú ý:
Để rèn luyện thêm kỹ năng giải bài tập về hàm số bậc hai, bạn có thể tham khảo các bài tập tương tự sau:
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, bạn sẽ hiểu rõ hơn về Bài 4 trang 41 SGK Toán 11 Tập 1 - Chân trời sáng tạo và có thể tự tin giải các bài tập tương tự.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập