1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 2 trang 49 SGK Toán 11 tập 2 - Chân trời sáng tạo

Bài 2 trang 49 SGK Toán 11 tập 2 - Chân trời sáng tạo

Bài 2 trang 49 SGK Toán 11 Tập 2 - Chân trời sáng tạo

Bài 2 trang 49 SGK Toán 11 Tập 2 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để tính đạo hàm và giải các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tính đạo hàm của các hàm số sau:

Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \sin 3x\);

b) \(y = {\cos ^3}2x\);

c) \(y = {\tan ^2}x\);

d) \(y = \cot \left( {4 - {x^2}} \right)\).

Phương pháp giải - Xem chi tiếtBài 2 trang 49 SGK Toán 11 tập 2 - Chân trời sáng tạo 1

Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\).

Lời giải chi tiết

a) Đặt \(u = 3{\rm{x}}\) thì \(y = \sin u\). Ta có: \(u{'_x} = {\left( {3{\rm{x}}} \right)^\prime } = 3\) và \(y{'_u} = {\left( {\sin u} \right)^\prime } = \cos u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = \cos u.3 = 3\cos 3{\rm{x}}\).

Vậy \(y' = 3\cos 3{\rm{x}}\).

b) Đặt \(u = \cos 2{\rm{x}}\) thì \(y = {u^3}\). Ta có: \(u{'_x} = {\left( {\cos 2{\rm{x}}} \right)^\prime } = - 2\sin 2{\rm{x}}\) và \(y{'_u} = {\left( {{u^3}} \right)^\prime } = 3{u^2}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 3{u^2}.\left( { - 2\sin 2{\rm{x}}} \right) = 3{\left( {\cos 2{\rm{x}}} \right)^2}.\left( { - 2\sin 2{\rm{x}}} \right) = - 6\sin 2{\rm{x}}{\cos ^2}2{\rm{x}}\).

Vậy \(y' = - 6\sin 2{\rm{x}}{\cos ^2}2{\rm{x}}\).

c) Đặt \(u = \tan {\rm{x}}\) thì \(y = {u^2}\). Ta có: \(u{'_x} = {\left( {\tan {\rm{x}}} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\) và \(y{'_u} = {\left( {{u^2}} \right)^\prime } = 2u\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = 2u.\frac{1}{{{{\cos }^2}x}} = 2\tan x\left( {{{\tan }^2}x + 1} \right)\).

Vậy \(y' = 2\tan x\left( {{{\tan }^2}x + 1} \right)\).

d) Đặt \(u = 4 - {x^2}\) thì \(y = \cot u\). Ta có: \(u{'_x} = {\left( {4 - {x^2}} \right)^\prime } = - 2{\rm{x}}\) và \(y{'_u} = {\left( {\cot u} \right)^\prime } = - \frac{1}{{{{\sin }^2}u}}\).

Suy ra \(y{'_x} = y{'_u}.u{'_x} = - \frac{1}{{{{\sin }^2}u}}.\left( { - 2{\rm{x}}} \right) = \frac{{2{\rm{x}}}}{{{{\sin }^2}\left( {4 - {x^2}} \right)}}\).

Vậy \(y' = \frac{{2{\rm{x}}}}{{{{\sin }^2}\left( {4 - {x^2}} \right)}}\).

Bài 2 trang 49 SGK Toán 11 Tập 2 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 2 trang 49 SGK Toán 11 Tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 2 yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 + 3x + 1) / (x + 1)
  • d) y = sin(2x + 1)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

c) y = (x2 + 3x + 1) / (x + 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2

d) y = sin(2x + 1)

Áp dụng công thức đạo hàm của hàm hợp, ta có:

y' = cos(2x + 1) * 2 = 2cos(2x + 1)

Lưu ý khi giải bài tập

  • Nắm vững các công thức đạo hàm cơ bản.
  • Áp dụng đúng công thức đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Kiểm tra lại kết quả sau khi tính toán.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập sau:

  1. Tính đạo hàm của hàm số y = x4 - 2x2 + 1
  2. Tính đạo hàm của hàm số y = (x + 1) / (x - 1)
  3. Tính đạo hàm của hàm số y = cos(x2)

Kết luận

Bài 2 trang 49 SGK Toán 11 Tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Việc nắm vững các công thức đạo hàm và áp dụng đúng các quy tắc sẽ giúp học sinh giải bài tập một cách nhanh chóng và chính xác. tusach.vn hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ tự tin hơn trong việc học tập môn Toán.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN