Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 4 trang 116, 117 SGK Toán 11 tập 1, chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Bài tập này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng và kiến thức đã học.
Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) (Hình 10). Trong \(\left( Q \right)\), hai đường thẳng \(a,b\) có bao nhiều điểm chung?
Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) (Hình 10). Trong \(\left( Q \right)\), hai đường thẳng \(a,b\) có bao nhiều điểm chung?
Cho ba mặt phẳng song song \(\left( P \right),\left( Q \right),\left( R \right)\) lần lượt cắt hai đường thăng \(a\) và \(a'\) tại các điểm \(A,B,C\) và \(A',B',C'\). Gọi \({B_1}\) là giao điểm của \(AC'\) với \(\left( Q \right)\) (Hình 12).
a) Trong tam giác \(ACC'\), có nhận xét gì về mối liên hệ giữa \(\frac{{AB}}{{BC}}\) và \(\frac{{A{B_1}}}{{{B_1}C'}}\)?
b) Trong tam giác \(AA'C'\), có nhận xét gì về mối liên hệ giữa \(\frac{{A{B_1}}}{{{B_1}C'}}\) và \(\frac{{A'B'}}{{B'C'}}\)?
c) Từ đó, nếu nhận xét về mối liên hệ giữa các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}},\frac{{AC}}{{A'C'}}\).

Phương pháp giải:
‒ Sử dụng định lí 3: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.
‒ Sử dụng định lí Thalès trong tam giác.
‒ Sử dụng tính chất của tỉ lệ thức.
Lời giải chi tiết:
a) Ta có:
\(\left. \begin{array}{l}\left( Q \right)\parallel \left( R \right)\\\left( {ACC'} \right) \cap \left( Q \right) = B{B_1}\\\left( {ACC'} \right) \cap \left( R \right) = CC'\end{array} \right\} \Rightarrow B{B_1}\parallel CC' \Rightarrow \frac{{AB}}{{BC}} = \frac{{A{B_1}}}{{{B_1}C'}}\left( 1 \right)\)
b) Ta có:
\(\left. \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\\left( {AA'C'} \right) \cap \left( Q \right) = B{B_1}\\\left( {AA'C'} \right) \cap \left( P \right) = AA'\end{array} \right\} \Rightarrow B{B_1}\parallel AA' \Rightarrow \frac{{A{B_1}}}{{{B_1}C'}} = \frac{{A'B'}}{{B'C'}}\left( 2 \right)\)
c) Từ (1) và (2) suy ra \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}} \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AB + BC}}{{A'B' + B'C'}} = \frac{{AC}}{{A'C'}}\)
Vậy \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\).
Cho hình chóp \(S.ABC\) có \(SA = 9,SB = 12,SC = 15\). Trên cạnh \(SA\) lấy các điểm \(M,N\) sao cho \(SM = 4,MN = 3,N4 = 2\). Vẽ hai mặt phẳng song song với mặt phẳng \(\left( {ABC} \right)\), lần lượt đi qua \(M,N\), cắt \(SB\) theo thứ tự tại \(M',N'\) và cắt \(SC\) theo thứ tự tại \(M'',N''\). Tính độ dài các đoạn thẳng \(SM',M'N',{\rm{ }}M''N'',N''C\).
Phương pháp giải:
Sử dụng định lí Thalès trong không gian: Ba mặt phẳng đôi một song song chắn trên hai cát tuyến bất kì các đoạn thẳng tương ứng tỉ lệ.
Lời giải chi tiết:

Ta có: \(\left( {MM'M''} \right)\parallel \left( {NN'N''} \right)\parallel \left( {ABC} \right)\) nên theo định lí Thalès ta có:
\(\frac{{SM}}{{SA}} = \frac{{SM'}}{{SB}} \Leftrightarrow SM' = \frac{{SM.SB}}{{SA}} = \frac{{4.12}}{9} = \frac{{16}}{3}\)
\(\frac{{SA}}{{SB}} = \frac{{MN}}{{M'N'}} \Leftrightarrow M'N' = \frac{{MN.SB}}{{SA}} = \frac{{3.12}}{9} = 4\)
\(\frac{{SA}}{{SC}} = \frac{{MN}}{{M''N''}} \Leftrightarrow M''N'' = \frac{{MN.SC}}{{SA}} = \frac{{3.15}}{9} = 5\)
\(\frac{{SA}}{{SC}} = \frac{{NA}}{{N''C}} \Leftrightarrow N''C = \frac{{NA.SC}}{{SA}} = \frac{{2.15}}{9} = \frac{{10}}{3}\)
Mục 4 trang 116, 117 SGK Toán 11 tập 1 Chân trời sáng tạo là một phần quan trọng trong chương trình học, tập trung vào việc vận dụng các kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Để giúp các em học sinh nắm vững kiến thức và tự tin làm bài, tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho từng bài tập trong mục này.
Mục 4 thường bao gồm các dạng bài tập sau:
Để giải quyết các bài tập trong Mục 4, các em cần nắm vững các kiến thức sau:
Cho hàm số y = f(x) = 2x + 1. Hãy xác định tập xác định và tập giá trị của hàm số.
Lời giải:
Cho hàm số y = x2. Hãy xác định tính đơn điệu của hàm số.
Lời giải:
Hàm số y = x2 là một hàm số bậc hai. Đạo hàm của hàm số là y' = 2x. Khi x < 0, y' < 0, do đó hàm số nghịch biến trên khoảng (-∞, 0). Khi x > 0, y' > 0, do đó hàm số đồng biến trên khoảng (0, +∞).
Để giải nhanh các bài tập trong Mục 4, các em có thể áp dụng các mẹo sau:
Ngoài SGK Toán 11 tập 1 Chân trời sáng tạo, các em có thể tham khảo thêm các tài liệu sau:
Tusach.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em sẽ tự tin hơn trong việc học tập và giải quyết các bài tập trong Mục 4 trang 116, 117 SGK Toán 11 tập 1 Chân trời sáng tạo. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập