Bài 12 trang 86 SGK Toán 11 tập 1 thuộc chương 1: Hàm số lượng giác và đồ thị. Bài học này tập trung vào việc giải các bài toán liên quan đến hàm số lượng giác, đặc biệt là các bài toán về tìm tập xác định, tập giá trị, và tính đơn điệu của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).
Đề bài
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).
Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Phương pháp giải - Xem chi tiết
Bước 1: Xét tính liên tục của hàm số trên từng khoảng xác định.
Bước 2: Tính \(f\left( {{x_0}} \right)\).
Bước 3: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).
Bước 4: Giải phương trình \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) để tìm \(a\).
Lời giải chi tiết
Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).
Ta có: \(f\left( 5 \right) = a\)
\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\). Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).
Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo là một phần quan trọng trong chương trình học Toán 11, tập trung vào việc củng cố kiến thức về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, từ đó nâng cao khả năng tư duy và giải quyết vấn đề.
Bài 12 thường bao gồm các dạng bài tập sau:
Để giải quyết các bài tập trong Bài 12 trang 86, học sinh cần:
Bài tập: Tìm tập xác định của hàm số y = tan(2x + π/3).
Giải: Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Điều này tương đương với 2x ≠ π/6 + kπ, hay x ≠ π/12 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/12 + kπ/2, k ∈ Z}.
Khi giải các bài tập về hàm số lượng giác, học sinh cần chú ý đến các điểm sau:
Ngoài SGK Toán 11 tập 1 - Chân trời sáng tạo, học sinh có thể tham khảo thêm các tài liệu sau:
tusach.vn hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, các bạn học sinh sẽ tự tin hơn trong việc giải Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo. Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập