1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 4 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo

Bài 4 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo

Bài 4 trang 51 SGK Toán 11 Tập 2 - Chân trời sáng tạo

Bài 4 trang 51 SGK Toán 11 Tập 2 thuộc chương trình Toán 11, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến phép biến hình. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để xác định ảnh của điểm, đường thẳng, đường tròn qua phép biến hình.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hàm số \(y = \frac{{x + 3}}{{x + 2}}\) có đạo hàm là

Đề bài

Hàm số \(y = \frac{{x + 3}}{{x + 2}}\) có đạo hàm là

A. \(y' = \frac{1}{{{{\left( {x + 2} \right)}^2}}}\).

B. \(y' = \frac{5}{{{{\left( {x + 2} \right)}^2}}}\).

C. \(y' = \frac{{ - 1}}{{{{\left( {x + 2} \right)}^2}}}\).

D. \(y' = \frac{{ - 5}}{{{{\left( {x + 2} \right)}^2}}}\).

Phương pháp giải - Xem chi tiếtBài 4 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo 1

Sử dụng công thức tính đạo hàm của thương.

Lời giải chi tiết

\(y' = \frac{{{{\left( {x + 3} \right)}^\prime }\left( {x + 2} \right) - \left( {x + 3} \right){{\left( {x + 2} \right)}^\prime }}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{1.\left( {x + 2} \right) - \left( {x + 3} \right).1}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{x + 2 - x - 3}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - 1}}{{{{\left( {x + 2} \right)}^2}}}\)

Chọn C.

Bài 4 trang 51 SGK Toán 11 Tập 2 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 4 trang 51 SGK Toán 11 Tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về phép biến hình, đặc biệt là phép tịnh tiến, phép quay và phép vị tự. Dưới đây là giải chi tiết bài tập này, cùng với những hướng dẫn và lưu ý quan trọng để bạn có thể tự tin giải quyết các bài toán tương tự.

Nội dung bài tập

Bài 4 yêu cầu học sinh xác định ảnh của các điểm, đường thẳng và đường tròn khi thực hiện các phép biến hình cho trước. Cụ thể, bài tập thường đưa ra một hình trong mặt phẳng tọa độ và yêu cầu tìm ảnh của hình đó sau khi thực hiện một hoặc nhiều phép biến hình.

Phương pháp giải

Để giải bài tập này, bạn cần nắm vững các công thức và tính chất của các phép biến hình:

  • Phép tịnh tiến: M'(x' ; y') = M(x + a ; y + b)
  • Phép quay: M'(x' ; y') = Q(O, θ)(M) với x' = xcosθ - ysinθ + a và y' = xsinθ + ycosθ + b
  • Phép vị tự: M'(x' ; y') = V(O, k)(M) với x' = k(x - a) + a và y' = k(y - b) + b

Trong đó:

  • M(x; y) là điểm gốc.
  • M'(x'; y') là ảnh của điểm M qua phép biến hình.
  • a, b là tọa độ của điểm gốc (thường là O).
  • θ là góc quay.
  • k là tỉ số vị tự.

Giải chi tiết bài 4 trang 51 SGK Toán 11 Tập 2 - Chân trời sáng tạo

(Giải chi tiết từng ý của bài tập, ví dụ:)

  1. a) Tìm ảnh của điểm A(1; 2) qua phép tịnh tiến theo vectơ v = (3; -1).
  2. Áp dụng công thức phép tịnh tiến: A'(1 + 3; 2 - 1) = A'(4; 1)

  3. b) Tìm ảnh của đường thẳng d: x + y - 2 = 0 qua phép quay Q(O; 90°).
  4. Để tìm ảnh của đường thẳng, ta cần tìm ảnh của ít nhất hai điểm thuộc đường thẳng. Ví dụ, chọn A(2; 0) và B(0; 2) thuộc d. Sau đó, áp dụng công thức phép quay để tìm A' và B', rồi tìm phương trình đường thẳng đi qua A' và B'.

Lưu ý khi giải bài tập

  • Nắm vững công thức và tính chất của các phép biến hình.
  • Chú ý đến tọa độ của điểm gốc và các thông số của phép biến hình (góc quay, tỉ số vị tự).
  • Khi tìm ảnh của đường thẳng hoặc đường tròn, cần tìm ảnh của ít nhất ba điểm thuộc hình đó.
  • Kiểm tra lại kết quả bằng cách thay tọa độ điểm vào phương trình đường thẳng hoặc đường tròn.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về phép biến hình, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 Tập 2 - Chân trời sáng tạo hoặc trên các trang web học tập trực tuyến như tusach.vn.

Kết luận

Bài 4 trang 51 SGK Toán 11 Tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về phép biến hình và ứng dụng của chúng trong thực tế. Hy vọng với lời giải chi tiết và những hướng dẫn trên, bạn sẽ tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN