Chào mừng các em học sinh đến với lời giải chi tiết mục 5 trang 45, 46 SGK Toán 11 tập 2, chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em giải quyết các bài toán khó và nắm vững kiến thức Toán học.
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\).
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\).
Ta có \(\frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\)
nên \(h'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = ... + ...\)
Chọn biểu thức thích hợp thay cho chỗ chấm để tìm \(h'\left( {{x_0}} \right)\).
Phương pháp giải:
Sử dụng định nghĩa đạo hàm: \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)
Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).
Tính đạo hàm của các hàm số sau:
a) \(y = x{\log _2}x\);
b) \(y = {x^3}{e^x}\).
Phương pháp giải:
Sử dụng công thức \({\left( {u.v} \right)^\prime } = u'v + uv'\).
Lời giải chi tiết:
a) \(y' = {\left( {x{{\log }_2}x} \right)^\prime } = {\left( x \right)^\prime }{\log _2}x + x{\left( {{{\log }_2}x} \right)^\prime } = {\log _2}x + x.\frac{1}{{x\ln 2}} = {\log _2}x + \frac{1}{{\ln 2}}\).
b) \(y' = {\left( {{x^3}{e^x}} \right)^\prime } = {\left( {{x^3}} \right)^\prime }{e^x} + {x^3}{\left( {{e^x}} \right)^\prime } = 3{{\rm{x}}^2}{e^x} + {x^3}{e^x}\)
Mục 5 trang 45, 46 SGK Toán 11 tập 2 chương trình Chân trời sáng tạo tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Đây là một phần quan trọng trong chương trình Toán 11, đòi hỏi học sinh phải nắm vững các kiến thức về hàm số lượng giác, đồ thị hàm số lượng giác và các ứng dụng của chúng.
Dưới đây là hướng dẫn giải chi tiết các bài tập trong mục 5 trang 45, 46 SGK Toán 11 tập 2:
(Đề bài: Xác định tập xác định của hàm số y = tan(2x + π/3))
Hướng dẫn giải: Hàm số y = tan(u) xác định khi u ≠ π/2 + kπ, k ∈ Z. Do đó, 2x + π/3 ≠ π/2 + kπ, k ∈ Z. Giải phương trình này, ta tìm được tập xác định của hàm số.
(Đề bài: Tìm chu kỳ của hàm số y = 2cos(x - π/4))
Hướng dẫn giải: Chu kỳ của hàm số y = cos(x) là 2π. Do đó, chu kỳ của hàm số y = 2cos(x - π/4) cũng là 2π.
(Đề bài: Vẽ đồ thị hàm số y = sin(x) trên khoảng [-π, π])
Hướng dẫn giải: Lập bảng giá trị của hàm số y = sin(x) tại các điểm đặc biệt trong khoảng [-π, π]. Sau đó, vẽ đồ thị hàm số dựa trên bảng giá trị này.
Tusach.vn tự hào là một trong những trang web cung cấp lời giải bài tập Toán 11 tập 2 Chân trời sáng tạo đầy đủ và chính xác nhất. Chúng tôi luôn cập nhật nội dung mới nhất và cung cấp các phương pháp giải bài tập dễ hiểu, giúp các em học sinh đạt kết quả tốt nhất.
Ngoài ra, Tusach.vn còn cung cấp nhiều tài liệu học tập hữu ích khác, như bài giảng, đề thi thử, và các bài viết chuyên sâu về Toán học. Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều điều thú vị!
| Chương | Bài | Nội dung |
|---|---|---|
| 3 | 5 | Ôn tập chương 3 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập