1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 50 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 5 trang 50 SGK Toán 11 Tập 1 thuộc chương trình học Toán 11, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\). Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn.

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\).

Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn.

Phương pháp giải - Xem chi tiếtBài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

• Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng:

Bước 1: Tìm \({u_{n + 1}}\).

Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).

Bước 3: Chứng minh \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\), từ đó kết luận dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Chứng minh \(\left( {{u_n}} \right)\) bị chặn: Sử dụng tính chất của bất đẳng thức.

Lời giải chi tiết

• Ta có: \({u_{n + 1}} = \frac{{2\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} = \frac{{2n + 2 - 1}}{{n + 1 + 1}} = \frac{{2n + 1}}{{n + 2}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{2n + 1}}{{n + 2}} - \frac{{2n - 1}}{{n + 1}} = \frac{{\left( {2n + 1} \right)\left( {n + 1} \right) - \left( {2n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {2{n^2} + n + 2n + 1} \right) - \left( {2{n^2} - n + 4n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{2{n^2} + n + 2n + 1 - 2{n^2} + n - 4n + 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{3}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)

Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Ta có: \({u_n} = \frac{{2n - 1}}{{n + 1}} = \frac{{2\left( {n + 1} \right) - 3}}{{n + 1}} = 2 - \frac{3}{{n + 1}}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(n + 1 > 0 \Leftrightarrow \frac{3}{{n + 1}} > 0 \Leftrightarrow 2 - \frac{3}{{n + 1}} < 2 \Leftrightarrow {u_n} < 2\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.

\(n \ge 1 \Leftrightarrow n + 1 \ge 1 + 1 \Leftrightarrow n + 1 \ge 2 \Leftrightarrow \frac{3}{{n + 1}} \le \frac{3}{2} \Leftrightarrow 2 - \frac{3}{{n + 1}} \ge 2 - \frac{3}{2} \Leftrightarrow {u_n} \ge \frac{1}{2}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.

Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

Bài 5 trang 50 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 50 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài tập yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Xác định tập xác định của hàm số.
  • Tính đạo hàm của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Vẽ đồ thị của hàm số.

Giải chi tiết

Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:

  • Khái niệm về hàm số và tập xác định.
  • Các quy tắc tính đạo hàm.
  • Điều kiện cần và đủ để hàm số có cực trị.
  • Cách khảo sát sự biến thiên của hàm số.
  • Cách vẽ đồ thị của hàm số.

Ví dụ: Xét hàm số y = x3 - 3x2 + 2.

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm: y' = 3x2 - 6x.
  3. Điểm cực trị: Giải phương trình y' = 0, ta được x = 0 và x = 2.
  4. Khảo sát sự biến thiên:
    • Khi x < 0, y' > 0, hàm số đồng biến.
    • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Khi x > 2, y' > 0, hàm số đồng biến.
  5. Đồ thị: Dựa vào bảng biến thiên, ta có thể vẽ được đồ thị của hàm số.

Mẹo giải nhanh

Để giải bài tập này một cách nhanh chóng và hiệu quả, học sinh có thể áp dụng các mẹo sau:

  • Sử dụng các công thức đạo hàm cơ bản.
  • Chú ý đến các khoảng mà hàm số đồng biến hoặc nghịch biến.
  • Vẽ phác thảo đồ thị của hàm số để kiểm tra kết quả.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về hàm số và ứng dụng của đạo hàm, học sinh có thể làm thêm các bài tập tương tự trong SGK và sách bài tập Toán 11 Tập 1 - Chân trời sáng tạo.

Kết luận

Bài 5 trang 50 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ giải bài tập này một cách dễ dàng và hiệu quả.

Hàm sốĐạo hàmĐiểm cực trị
y = x3 - 3x2 + 2y' = 3x2 - 6xx = 0, x = 2

Nguồn tham khảo:

  • Sách giáo khoa Toán 11 Tập 1 - Chân trời sáng tạo
  • Sách bài tập Toán 11 Tập 1 - Chân trời sáng tạo
  • tusach.vn

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN