Chào mừng bạn đến với lời giải chi tiết Mục 1 trang 89 SGK Toán 11 tập 2, thuộc bộ sách Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh.
Gieo hai con xúc xắc cân đối và đồng chất
Gieo hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, \(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.
a) Hãy viết tập hợp mô tả các biến cố trên.
b) Hãy liệt kê các kết quả của phép thử làm cho cả hai biến cố \(A\) và \(B\) cùng xảy ra.
Phương pháp giải:
Liệt kê các phần tử của tập hợp.
Lời giải chi tiết:
a) \(A = \left\{ {\left( {1;4} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {4;1} \right)} \right\}\)
\(B = \left\{ {\left( {1;6} \right);\left( {2;3} \right);\left( {3;2} \right);\left( {6;1} \right)} \right\}\)
b) Các kết quả của phép thử làm cho cả hai biến cố \(A\) và \(B\) cùng xảy ra là \(\left( {2;3} \right);\left( {3;2} \right)\)
Tiếp tục với phép thử ở Ví dụ 1.
a) Gọi \(D\) là biến cố “Số chấm xuất hiện trên con xúc xắc thứ nhất là 3”. Hãy xác định các biến cố \(AD,BD\) và \(C{\rm{D}}\).
b) Gọi \(\bar A\) là biến cố đối của biến cố \(A\). Hãy viết tập hợp mô tả các biến cố giao \(\bar AB\) và \(\bar AC\).
Phương pháp giải:
Liệt kê các phần tử của tập hợp.
Lời giải chi tiết:
a) \(D = \left\{ {\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right)} \right\}\)
\(A{\rm{D}} = \left\{ {\left( {3;2} \right)} \right\};B{\rm{D}} = \left\{ {\left( {3;2} \right)} \right\};C{\rm{D}} = \left\{ {\left( {3;1} \right)} \right\}\)
b) \(\bar AB = \left\{ {\left( {1;6} \right);\left( {6;1} \right)} \right\}\)
\(\bar A{\rm{C}} = \left\{ {\left( {1;6} \right);\left( {6;1} \right);\left( {1;5} \right);\left( {5;1} \right);\left( {1;3} \right);\left( {3;1} \right);\left( {1;2} \right);\left( {2;1} \right);\left( {1;1} \right)} \right\}\)
Mục 1 trang 89 SGK Toán 11 tập 2 Chân trời sáng tạo thường xoay quanh các bài toán về đạo hàm của hàm số. Để giải quyết những bài toán này, học sinh cần nắm vững các kiến thức cơ bản về định nghĩa đạo hàm, các quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Để giải các bài tập trong Mục 1, bạn có thể áp dụng các phương pháp sau:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1
Giải:
f'(x) = (3x2)' + (2x)' + (-1)'
f'(x) = 6x + 2 + 0
f'(x) = 6x + 2
| Hàm số y = f(x) | Đạo hàm y' = f'(x) |
|---|---|
| c (hằng số) | 0 |
| xn | nxn-1 |
| sin x | cos x |
| cos x | -sin x |
Kết luận: Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng trong chương trình Toán 11. Hãy dành thời gian ôn tập lý thuyết và luyện tập thường xuyên để đạt kết quả tốt nhất. tusach.vn hy vọng bài giải này sẽ giúp bạn tự tin hơn trong quá trình học tập.
Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại để lại bình luận bên dưới. Chúng tôi luôn sẵn sàng hỗ trợ bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập