1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Bài 6 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo

Bài 6 trang 106 SGK Toán 11 Tập 1 thuộc chương trình Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán thực tế.

tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.

Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các đường thẳng song song trong thực tế.

Đề bài

Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các đường thẳng song song trong thực tế.

Bài 6 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtBài 6 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

Quan sát và trả lời câu hỏi.

Lời giải chi tiết

Hình a: Các dây điện song song với nhau.

Hình b: Các mép của viên gạch song song với nhau.

Hình c: Các mép của bậc thang song song với nhau.

Hình d: Các mép của phím đàn song song với nhau.

Hình e: Các mép của các ngăn trên giá sách song song với nhau.

Hình g: Các mép của viên gạch song song với nhau.

Một số ví dụ khác về các đường thẳng song song trong thực tế: Các cạnh bàn đối diện nhau song song với nhau, các mép tường đối diện nhau song song với nhau,…

Bài 6 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 6 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 6 yêu cầu học sinh giải các bài toán liên quan đến việc xác định tính đơn điệu của hàm số, tìm cực trị và vẽ đồ thị hàm số. Cụ thể, bài tập có thể bao gồm:

  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Tìm điểm cực đại, cực tiểu của hàm số.
  • Vẽ đồ thị hàm số dựa trên các thông tin đã tìm được.

Lời giải chi tiết

Để giải bài 6 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo, học sinh cần thực hiện các bước sau:

  1. Bước 1: Tính đạo hàm của hàm số.
  2. Bước 2: Tìm các điểm dừng của hàm số (điểm mà đạo hàm bằng 0 hoặc không xác định).
  3. Bước 3: Lập bảng biến thiên để xác định khoảng đồng biến, nghịch biến của hàm số.
  4. Bước 4: Xác định các điểm cực đại, cực tiểu của hàm số.
  5. Bước 5: Vẽ đồ thị hàm số.

Ví dụ, xét hàm số y = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  • Bước 1: y' = 3x2 - 6x
  • Bước 2: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bước 3: Lập bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  • Bước 4: Hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2.
  • Bước 5: Vẽ đồ thị hàm số.

Mẹo giải nhanh

Để giải nhanh bài 6 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo, học sinh có thể sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm vẽ đồ thị. Ngoài ra, việc nắm vững các công thức và định lý liên quan đến hàm số và đạo hàm cũng rất quan trọng.

Bài tập tương tự

Để rèn luyện kỹ năng giải toán, học sinh có thể làm thêm các bài tập tương tự sau:

  • Bài 7 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo
  • Bài 8 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo
  • Các bài tập trong sách bài tập Toán 11 Tập 1 - Chân trời sáng tạo

Kết luận

Bài 6 trang 106 SGK Toán 11 Tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và hướng dẫn trên, học sinh có thể tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN