Chào mừng bạn đến với tusach.vn! Chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho bài tập mục 1 trang 21 SGK Toán 11 tập 1 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi hiểu rằng việc học Toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, tusach.vn luôn cố gắng cung cấp những giải pháp học tập hiệu quả nhất, giúp bạn đạt kết quả tốt nhất.
Quan sát Hình 1. Từ hai cách tính tích vô hướng của vectơ \(\overrightarrow {OM} ,\overrightarrow {ON} \) sau đây:
Quan sát Hình 1. Từ hai cách tính tích vô hướng của vectơ \(\overrightarrow {OM} ,\overrightarrow {ON} \) sau đây:

\(\overrightarrow {OM} .\overrightarrow {ON} = \left| {\overrightarrow {OM} } \right|.\left| {\overrightarrow {ON} } \right|.cos\left( {\overrightarrow {OM} ,\overrightarrow {ON} } \right)\)\( = cos\left( {\overrightarrow {OM} ,\overrightarrow {ON} } \right) = cos\left( {\alpha - \beta } \right)\)
\(\overrightarrow {OM} .\overrightarrow {ON} = {x_M}.{x_N} + {y_M}.{y_N}\)
Hãy suy ra công thức tính cos(α – β) theo các giá trị lượng giác của α và β. Từ đó, hãy suy ra công thức cos(α + β) bằng cách thay β bằng – β.
Phương pháp giải:
Dựa vào hình vẽ và 2 công thức tính tích vô hướng để giải quyết
Lời giải chi tiết:
Ta có:
\(cos\left( {\alpha - \beta } \right) = {x_M}.{x_N} + {y_M}.{y_N} = cos\alpha .cos\beta + \sin \alpha .\sin \beta \)
\(cos\left( {\alpha + \beta } \right) = cos\left( {\alpha - \left( { - \beta } \right)} \right) = cos\alpha .cos\left( { - \beta } \right) + \sin \alpha .\sin \left( { - \beta } \right) = cos\alpha .cos\beta - \sin \alpha .\sin \beta \)
Tính \(\sin \frac{\pi }{{12}}\) và \(\tan \frac{\pi }{{12}}\)
Phương pháp giải:
Sử dụng công thức \(\sin \left( {a - b} \right) = \sin a\cos b - \cos asinb\).
\(\tan \alpha = \frac{{\sin \alpha }}{{cos\alpha }}\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\sin \frac{\pi }{{12}} = \sin \left( {\frac{\pi }{3} - \frac{\pi }{4}} \right) = \sin \frac{\pi }{3}cos\frac{\pi }{4} - cos\frac{\pi }{3}\sin \frac{\pi }{4}\\ = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} - \frac{1}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\\{\rm{cos}}\frac{\pi }{{12}} = \frac{{\sqrt 6 + \sqrt 2 }}{4}\\\tan \frac{\pi }{{12}} = \frac{{\sin \frac{\pi }{{12}}}}{{{\rm{cos}}\frac{\pi }{{12}}}} = \frac{{\frac{{\sqrt 6 - \sqrt 2 }}{4}}}{{\frac{{\sqrt 6 + \sqrt 2 }}{4}}} = 2 - \sqrt 3 \end{array}\)
Mục 1 trang 21 SGK Toán 11 tập 1 Chân trời sáng tạo thường xoay quanh các khái niệm cơ bản về hàm số, bao gồm tập xác định, tập giá trị, và cách xác định hàm số bằng đồ thị. Việc nắm vững những kiến thức này là nền tảng quan trọng để học tốt các phần tiếp theo của chương trình.
Các bài tập trong mục này thường yêu cầu học sinh:
Dưới đây là lời giải chi tiết cho từng bài tập trong Mục 1 trang 21 SGK Toán 11 tập 1 Chân trời sáng tạo:
Cho hàm số y = f(x) = √(x - 2). Hãy xác định tập xác định của hàm số.
Lời giải:
Hàm số y = f(x) = √(x - 2) xác định khi và chỉ khi x - 2 ≥ 0, tức là x ≥ 2. Vậy tập xác định của hàm số là D = [2, +∞).
Cho hàm số y = g(x) = 1/(x + 1). Hãy xác định tập giá trị của hàm số.
Lời giải:
Hàm số y = g(x) = 1/(x + 1) xác định khi x ≠ -1. Vì x có thể nhận bất kỳ giá trị nào khác -1, nên y có thể nhận bất kỳ giá trị nào khác 0. Vậy tập giá trị của hàm số là R \ {0}.
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để học Toán 11 hiệu quả hơn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập